• Title/Summary/Keyword: Digital Redesign

Search Result 107, Processing Time 0.025 seconds

Development of Digital PWM Attitude Controller for Nonlinear Artificial Satellites Using Intelligent Digital Redesign (지능형 디지털 재설계를 이용한 비선형 인공위성의 디지털 PWM 정밀 자세 제어기의 개발)

  • Joo, Young-Hoon;Lee, Ho-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.726-731
    • /
    • 2004
  • This paper proposes a pulse-width-modulation (PWM) controller design technique using intelligent digital redesign. Intelligent digital redesign is to convert a well-designed analog fuzzy-model-based controller into an equivalent pulse-amplitude-modulation (PAM) digital controller maintaining the original analog control system in the sense of state-matching. In similar line of conversion concept, the redesigned PAM intelligent digital controller is converted into a PWM controller using the equivalent area principle. To convincingly visualize the proposed technique, an computer simulation example-attitude control of nonlinear artificial satellite system is included.

Intelligent Digital Redesign:Unmeasurable Premise Variable Case (지능형 디지털 재설계: 전건부 변수가 측정 불가능한 경우)

  • Ho Jae, Lee;Jin Bae Park;Yeon Woo Lee;Young Hoon Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.502-505
    • /
    • 2004
  • An intelligent digital redesign technique (IDR) for the observer-based output feedback Takagi-Sugeno (T-S) fuzzy control system with unmeasurable premise variables is developed. The considered IDR condition is cubically parameterized as convex minimization problems of the norm distances between linear operators to be matched.

  • PDF

Digita Redesign of Observer-Based Output Feedback Controller

  • Lee, Ho-Jae;Park, Jin-Bae;Cho, Kwang-Lae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.64.5-64
    • /
    • 2002
  • This paper concerns a new digital redesign (DR) technique for an observer-based output-feedback control (OBOFC) system. The term DR involves converting an analog controller into an equivalent digital one in the sense of state-matching. The considered DR problem is formulated as convex minimization problems of the norm distances between linear operators to be matched. The stability condition is easily embedded and the separation principle on the DR of the OBOFC is explicitly shown. A numerical example is included for visualizing the feasibility of the proposed technique.

  • PDF

Sampled-Data Control of Formation Flying using Optimal Linearization (최적 선형화 기반 디지털 재설계 기법을 이용한 편대 비행의 샘플치 제어)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • This paper proposes an efficient sampled-data controller design technique for formation flying. To deal with the nonlinearity in the formation flying dynamics and to obtain a linear, rather than affine, model, we utilize the optimal linearization technique. The digital redesign technique is then developed based on the optimal linear model and formulated in terms of linear matrix inequalities. Simulation results show the advantage of the proposed methodology over the conventional controller emulation technique.

On the Stabilizability by the Intelligent Digital Redesign (지능형 디지털 재설계 기법의 안정화 가능성에 대하여)

  • Lee, Ho-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.7-10
    • /
    • 2006
  • 지능형 디지털 재설계 기법의 중요한 가정은 퍼지 IF-THEN 규칙의 발화도가 샘플링 구간에서 샘플링 순간의 값으로 근사화 된다는 점이다. 본 논문은 퍼지 IF-THEN 규칙 발화도의 근사화 가정을 배제한 경우에 대하여 기존의 지능형 디지털 재설계 기법에 의하여 재설계된 디지털 제어기의 안정화 가능성을 조사한다.

  • PDF

Development of Digital PWM Attitude Controller for Artificial Satellites Using Digital Redesign (디지털 재설계를 이용한 인공위성의 디지털 PWM 정밀 자세 제어기의 개발)

  • Joo, Young-Hoon;Lee, Yeon-Woo;Lee, Ho-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.397-402
    • /
    • 2003
  • This paper concerns a pulse-width-modulation (PWM) controller design technique using digital redesign. Digital redesign is to convert a well-designed analog controller into an equivalent pulse-amplitude-modulation (PAM) controller maintaining the original analog control system in the sense of state-matching. In similar line of conversion concept, the redesigned PAM controller is converted into a PWM controller using the equivalent area principle. To convincingly visualize the proposed technique, an computer simulation example-attitude control of artificial satellite system is included.

Intelligent Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 지능형 디지털 분산 제어 시스템 개발)

  • Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the intelligent digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for Heating, ventilating, and ai. conditioning (HVAC) system are provided.

Intelligent Digital Redesign for Dynamical Systems with Uncertainties (불확실성을 갖는 동적 시스템에 대한 지능형 디지털 재설계)

  • Cho, Kwang-Lae;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.667-672
    • /
    • 2003
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may also contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear systems. An extended parallel distributed compensation(EPDC) technique is then used to design a fuzzy-model-based controller for both stabilization and tracking. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using an integrated intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, The single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

An Approach to PWM Controller Design for the Attitude Control of Artificial Satellites

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.656-659
    • /
    • 2003
  • This paper concerns a design technique of pulse-width-modulated (PWM) controller via the digital redesign. The digital redesign is a converting technique a well-designed analog controller into the equivalent digital one maintaining the property of the original analog control system in the sense of state-matching. The redesigned digital controller is again converted into PWM controller using the equivalent area principle. An example-the altitude control or artificial satellites is included to show the effectiveness of the proposed method.

  • PDF

An Improved LMI-Based Intelligent Digital Redesign Using Compensated Bilinear Transform (보상된 bilinear 변환을 이용한 향상된 LMI 기반 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.91-94
    • /
    • 2005
  • This paper presents a new linear- matrix- inequality- basedintelligent digital redesign (LMI-based IDR) technique to match he states of the analog and the digital control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the multirate control is employed, and the control input is changed N times during one sampling period; 2) The proposed IDR technique is based on the compensated bilinear transformation.

  • PDF