• Title/Summary/Keyword: Digestive enzyme activity

Search Result 128, Processing Time 0.027 seconds

Effect of Heavy Metals on the Secretion of Amylase in Rat Pancreatic Fragments (중금속류가 취절편의 Amylase 분비에 미치는 영향)

  • Kim, Hea-Young;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.31-36
    • /
    • 1981
  • Heavy metals which are present as trace elements in human body have been known to modify various enzymatic reaction. These metals can be essential or non-essential. Zinc, copper and calcium are essential in maintaining some biological processes, whereas non-essential metals such as cadmium, lead and mercury produce accumulatve toxic effect. Cadmium accumulated in pancreas can cause toxicity and damage of pancreatic cells, thereby influencing CHO metabolism. Lead compounds are known to produce toxic effects on the kidney, digestive system and brain fellowed by inhibition of activity of ${\rho}-aminolevulinic$ acid and biosynthesis of hemoproteins and cytochrome. Evidence has been accumulated that zinc not only acts as a cofactor in enzyme reaction but also prevents toxic effect induced by heavy metal such as copper and cadmium. To demonstrate the effect of heavy metals on pancreatic secretion, part of uncinate pancreas was taken and incubated in Krebs-Ringer bicarbonate buffer with heavy metals used. Additional treatment with CCK-OP was performed when needed. After incubation during different period of time, medium was analyzed for amylase activity using Bernfeld's method. The present study was attempted in order to elucidate the effect of several kinds of heavy metal on exocrine pancreatic secretion in vitro. The results obtained are as follows: 1) CCK-OP stimulated significantly amylase release from pancreatic fragments in vitro. 2) CCK-OP response of amylase release from pancreatic fragments was inhibited by treatmant with cadmium, especially high doses of cadmium. 3) CCK-OP response of amylase release from pancreatic fragments was inhibited when pretreated with $10^{-4}M$ copper chloride. 4) Lead chloride at the concentration of $10^{-3}M\;and\;10^{4}M$ stimulated the basal amylase release in vitro but CCK-OP response did not augment by lead chloride. 5) Zine chloride did not affect amylase release from pancreatic fragment in vitro. From the results mentioned above, it is suggested that CCK-OP response was inhibited it the amylase release from pancreatic fragments pretreated with cadmium and copper chloride.

  • PDF

A NOTE ON THE REMOVAL OF PHYTATE IN SOYBEAN MEAL USING Aspergillus usami

  • Ilyas, A.;Hirabayasi, M.;Matsui, T.;Yano, H.;Yano, F.;Kikishima, T.;Takebe, M.;Hayakawa, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.135-138
    • /
    • 1995
  • Soybean meal was fermented by Aspergillus usami in order to reduce phytate content. Aflatoxin B1 was not detected in the fermented soybean meal. The contents of crude protein, crude fiber, ether extract and crude ash were slightly increased following fermentation with a concomitant reduction in nitrogen free extract. Though the fermentation partly degraded proteins in the soybean meal, there was small difference in amino acid composition between the soybean meal and the fermented soybean meal. The results showed that the fermentation did not affect nutritional value of protein in soybean meal. Approximately 55% of phosphorus extracted by trichloroacetic acid was inositol hexaphosphate (phytate) in the soybean meal. The content of inositol tetra to hexaphosphates was not detected in the fermented soybean meal. These results indicated that the fermentation almost completely eliminated phytate in soybean meal. Phytase activity was not detected in the unfermented soybean meal. However, the enzyme activity in the fermented soybean meal was 167.7 U/g. When the fermented soybean meal in supplemented in formula feeds, phytase in the fermented soybean meal might partly degrade the phytate in other ingredients in the digestive tract. The fermented soybean meal is possibly used as a phytate-free protein source of feed, which contains high available phosphorus.

Evaluation of radical scavenging and diasestive enzyme inhibitory capacities of peach twigs fraction extract (Prunus persica L. Bastch) (복숭아 나뭇가지 분획추출물의 라디칼 소거 및 소화효소 저해활성 평가)

  • Youjeoung Lee;Gyeong Han Jeong;Ju Yeon Hong;Tae Hoon Kim
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.170-178
    • /
    • 2023
  • We investigated the free radical scavenging and digestive enzyme inhibitory activities of the hot water extract of peach twig (Prunus persica L. Bastch). This extract of the peach twigs was further split up into n-hexane, ethyl acetate (EtOAc), and n-butyl alcohol(n-BuOH), which resulted in three solvent-soluble fractions. Free radical scavenging activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) assay systems, while hypoglycemic effect of the peach twig extract and the solvent-soluble fractions were tested using α-glucosidase and α-amylase inhibition assays. Accordingly, the EtOAc layer showed a greater free radical scavenging activity compared to other solvent-soluble fractions. Furthermore, based on the α-glucosidase and α-amylase assays, the IC50 values were determined to be 38.2±1.6 and 69.6±6.1 ㎍/mL for the EtOAc-soluble fractions, respectively. Taken together, these results suggest that the fractions obtained from the peach twig extract can be considered as a potential source of natural antioxidant and hypoglycaemic constituents.

Effect of Feeding on Postlarvae of Pacific White Shrimp, Litopenaeus vannamei during the Acclimation Process to Low Salinities in Seawater (해수 저염분 순치과정에서 먹이섭취가 흰다리새우, Litopenaeus vannamei 유생에 미치는 영향)

  • Kim, Su Kyoung;Shim, Na Young;Cho, Ji-Hyun;Kim, Jong Hyun;Kim, Su-Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.377-384
    • /
    • 2018
  • This study focused on the effects of feeding on postlarvae of shrimp, Litopenaeus vannamei, during the identified acclimation time to low salinity. A total of 5 different salinity groups with or without feeding (32, 24, 16, 8, and 2 psu, 1 liter, triplicates) were prepared, and 30 shrimp were settled at PL21 (postlarvae) and placed in each group. After 24 hours of the experimentation process, the survival rate of the fed and starved groups was observed to be lower in the 2 psu group compared to other salinity groups, with the rate of 86.6% and 81.1%, respectively. The condition index of glucose and triglyceride, which are important factors for osmoregulation and as energy sources, was 4.2-7.6 times and 2.7-3.4 times higher in the fed groups than the starved groups at all the levels of salinities. The creatine level increased by 1.1-1.5 times in the starved groups as compared to the fed groups. Likewise, the activity of all the digestive enzymes like, lipase, ${\alpha}$-amylase, trypsin, and alkaline protease were clearly higher in the fed groups (ANOVA, p<0.05). Apparently, it was observed that feeding is effective for the postlarvae of shrimp, which shows a characteristic fast metabolism and larval development, during the acclimation period to low salinity.

Responses of MFO System in Surf Clam, Pseudocardium sachalinensis, Injected with Sea-Nine 211 Antifoulant (Tin-free 방오제인 Sea-Nine 211에 노출된 북방대합에서 MFO 효소계의 반응)

  • Lee, Ji-Seon;Jeon, Yeong-Ha;Shim, Won-Joon;Jeon, Joong-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • Many alternative biocidal additives were applied to antifouling paint to replace TBT, and Sea-Nine 211 is one of alternating organic booster compounds used in antifouling paint. In this study, extent of Sea-Nine 211 toxicity on marine benthic bivalve is evaluated. Sea-Nine 211 was injected to surf clam, Pseudocardium sachalinensis, that inhabitate northern part of Gangwon Province, Korea. Survival rate of the clam and xenobiotics metabolizing enzyme activities in digestive gland were measured during 4 day-exposure period. The results were compared with those of TBT exposed clam. There were no mortality of clam in the solvent (DMSO) control group and the three Sea-Nine 211 exposure groups (5, 25, 50 mg kg$^{-1}$ body weight), while the clam exposed to 1, 2 and 5 mg kg$^{-1}$ TBT chloride (TBTC) demonstrated 70, 30 and 0% survival rate, respectively. The Sea-Nine 211 exposure group showed a tendency of cytochrome P450 (CYP) induction according to the exposure duration, on the other hand, CYP content was decreased in the TBT exposure group. NADPH cytochrome P450 reductase activity slightly increase according to the exposure duration in the Sea-Nine 211 exposure group, while TBTC inhibit its activity as CYP content. Moreover, there was no significant change of NADH cytochrome b5 reductate activity in the clam epxosed to Sea-Nine 211. In the TBTC exposure group, its activity increased in early exposure period and then significantly decreased the rest of exposure period. All the results indicate that Sea-Nine 211 demonstrated a tendency to induce CYP level, while TBTC inhibits the CYP level, NADPH cytochrome P450 reductase and NADH cytochrome b5 reductase activities.

Improvement on the Quality and Functionality of Skipjack Tuna Cooking Drip Using Commercial Enzymes (효소분해에 의한 참치 자숙액의 품질 및 기능성 개선)

  • Oh, Hyeun-Seok;Kim, Jin-Soo;Kim, Hye-Suk;Jee, Seung-Joon;Lee, Jae-Hyoung;Chung, In-Kwon;Kang, Kyung-Tae;Heu, Min-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.881-888
    • /
    • 2007
  • For the use of skipjack tuna cooking drip (STC) as a source of functional seasoning, the STC was hydrolyzed with various commercial enzymes, such as Alcalase, Flavourzyme, Neutrase and Protamex, and its hydrolysate was also investigated on the food component characteristics. The hydrolysate incubated with Alcalase for 30 min (HA30) showed 56.8% for angiotensin I converting enzyme (ACE) inhibitory activity and 1.18 for antioxidative activity, which were high or similar compared to the other enzymatic hydrolysates. There were no differences in ACE inhibitory activity and antioxidative activity among HA30, two-step enzymatic hydrolysates, and ultrafilterates (molecular weight cut off, 10 kDa). The HA30 was very stable on the digestive enzymes, such as chymotrypsin, pepsin, trypsin according to the TCA (trichloroacetic acid) soluble index. The results suggested that skipjack tuna cooking drip could be used as a source for preparing functional seasoning sauce.

Optimization of Submerged Culture Conditions for Protease Production and Its Enzymatic Properties (Protease 생산을 위한 최적 배양조건 및 생산된 Protease의 특성)

  • Cho, Hee-Yeon;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.12-19
    • /
    • 2004
  • This study was performed to investigate the optimum condition of protease production from submerged culture of oak mushroom (Lentinula edodes, Sanlim No. 5) and its enzymatic features. Among several combinations of media, the combination of wheat bran, corn flour, water and corn oil (WB+CF+W+ CO) yielded 84.8 U/g of maximum protease activity. This combination of ingredients, in spite of not being particularly protein-rich in comparison to the other media, allowed for good growth of the fungus and maximal protease production. Comparison of different growth medium liquids indicated that demineralized water afforded the best growth of the fungus and the highest protease activity. Acetate buffer and acidified water negatively affected The protease production peaked around 72 hr of incubation, and decreased thereafter. The molecular weights of produced protease were about 45,000 by Sephadex G-75 chromatography. The pH optimum for protease activity was 4, while maximal activity incubated at 37℃ for 1 hr was observed between pH 4~6. The optimum temperature of this protease was 55℃, and the enzyme was active over a broad temperature range (30~60℃), indicating that this protease would be suitable for a wide range of applications where. different pH and temperature are necessary, such as digestive aids, food industry, beer and tannery industries.

Development of Anti - obesity Dietary Supplement Decreasing Nutrient Absorption by Digestive Enzyme Inhibition in Gut (장내 소화 효소 활성 저해를 통한 섭취 영양소의 흡수 억제와 이를 이용한 비만 개선용 식이조성물의 개발)

  • Yun, Yu-Sik;Park, Yun-Sin;Hong, Jeong-Mi;Choe, Seon-Mi;Lee, Hong-Seok;Hong, Seong-Gil
    • Journal of the Korean Dietetic Association
    • /
    • v.8 no.2
    • /
    • pp.199-205
    • /
    • 2002
  • In this study, we found a new food additive as an natural herbal extracts against lipid digestion enzymes for the regulation of fatty acid absorption and weight control. The Water extracts of Platycodon grandiflorum and Solanum melongena. inhibited lipase activity and decresed serum total cholesterol and triglyceride concentration in mouse fed lipid emulsion. Twenty three volunteers were subjected to the intake of the herbal extracts plus the egg yolk IgY that inhibit carbohydrate digestion enzymes in gut for 50 days. In average, the treated subjects appeared to lose 1.96 kg of body weight and 3.4 kg of body fat mass during the treated period. Furthermore, Panniculus adiposus and breech size were significantly decreased during the experimental period. Above results suggested that the administration of the dietary additives composed of natural herbal extract and egg yolk IgY improve the obesity by the decrement of body weight and body fat mass.

  • PDF

Molecular and biochemical characterization of hemoglobinase, a cysteine proteinase, in Paragonimus westermani

  • Choi Joon-Hyuck;Lee Jae-Hyuk;Yu Hak-Sun;Jeong Hae-Jin;Kim Jin;Hong Yeon-Chul;Kong Hyun-Hee;Chung Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.187-196
    • /
    • 2006
  • The mammalian trematode Paragonimus westermani is a typical digenetic parasite, which can cause paragonimiasis in humans. Host tissues and blood cells are important sources of nutrients for development, growth and reproduction of P. westermani. In this study, a cDNA clone encoding a 47 kDa hemoglobinase of P. westermani was characterized by sequencing analysis, and its localization was investigated immunohistochemically. The phylogenetic tree prepared based on the hemoglobinase gene showed high homology with hemoglobinases of Fasciola hepatica and Schistosoma spp. Moreover, recombinant P. westermani hemoglobinase degradaded human hemoglobin at acidic pH (from 3.0 to 5.5) and its activity was almost completely inhibited by E-64, a cysteine proteinase inhibitor. Immunohistochemical studies showed that P. westermani hemoglobinase was localized in the epithelium of the adult worm intestine implying that the protein has a specific function. These observations suggest that hemoglobinase may act as a digestive enzyme for acquisition of nutrients from host hemoglobin. Further investigations may provide insights into hemoglobin catabolism in P. westermani.

Biochemical Analysis of Physiological Stress Induced by High Frequency Sound Treatment in the Beet Armyworm, Spodoptera exigua (고주파 처리에 따른 파밤나방(Spodoptera exigua)의 생리적 스트레스의 생화학적 분석)

  • Kim, Yong-Gyun;Son, Ye-Rim;Seo, Sam-Yeol;Park, Bok-Ri;Park, Jung-A
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • High frequency sounds disrupt physiological processes, such as feeding behavior, development and immune responses of Spodoptera exigua. We analyzed high frequency sounds with respect to biochemical changes in S. exigua. High frequency sound (5,000 Hz, 95 dB) suppressed protein synthesis and secretion of midgut epithelium. It also significantly inhibited a digestive enzyme activity of phospholipase $A_2$. The gene expression of three different heat shock proteins and apolipophorin III was altered, particularly in midgut tissue in response to high frequency sound treatments. High frequency sound treatments significantly increased sugar and lipid levels in hemolymph plasma. These results suggest that high frequency sounds are a physiological stress that induces biochemical changes in S. exigua.