Browse > Article
http://dx.doi.org/10.5656/KSAE.2012.06.0.009

Biochemical Analysis of Physiological Stress Induced by High Frequency Sound Treatment in the Beet Armyworm, Spodoptera exigua  

Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
Son, Ye-Rim (Department of Bioresource Sciences, Andong National University)
Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University)
Park, Bok-Ri (Department of Bioresource Sciences, Andong National University)
Park, Jung-A (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.51, no.3, 2012 , pp. 255-263 More about this Journal
Abstract
High frequency sounds disrupt physiological processes, such as feeding behavior, development and immune responses of Spodoptera exigua. We analyzed high frequency sounds with respect to biochemical changes in S. exigua. High frequency sound (5,000 Hz, 95 dB) suppressed protein synthesis and secretion of midgut epithelium. It also significantly inhibited a digestive enzyme activity of phospholipase $A_2$. The gene expression of three different heat shock proteins and apolipophorin III was altered, particularly in midgut tissue in response to high frequency sound treatments. High frequency sound treatments significantly increased sugar and lipid levels in hemolymph plasma. These results suggest that high frequency sounds are a physiological stress that induces biochemical changes in S. exigua.
Keywords
Sound; Protein; Sugar; Lipid; Heat shock protein; Spodoptera exigua;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Stanley, D.W. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44.   DOI   ScienceOn
2 Stephen, R.O. and J.C. Hartley. 1995. Sound production in crickets. J. Exp. Biol. 198: 2139-2152.
3 Tera, W.R. 1990. Evolution of digestive systems in insects. Annu. Rev. Entomol. 35: 181-200.   DOI
4 Velki, M., D. Kodrik, J. Vecera, B.K. Hackenberger and R. Socha. 2011. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol. 172: 77-84.   DOI
5 Walter, S. and J. Buchner. 2002. Molecular chaperons-cellular machines for protein folding. Angew. Chem. Int. Ed. 41: 1098-1113.   DOI   ScienceOn
6 Weers, P.M.M. and R.O. Ryan. 2006. Apolipophorin III: role model apolipophorin. Insect Biochem. Mol. Biol. 36: 231-240.   DOI
7 Xu, Q., Q. Zou, H. Zheng, F. Zhang, B. Tang and S. Wang. 2011. Three heat shock proteins from Spodoptera exigua: Gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. B 159: 92-102.
8 Young, D. and H.C. Bennet-Clark. 1995. The role of the tymbal in cicada sound production. J. Exp. Biol. 198: 1001-1019.
9 McIver, S.B. 1985. Mechanoreception. pp. 71-132. In Comprehensive insect physiology, biochemistry and pharmacology, vol. 6, eds. by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, UK.
10 Park, J., J. Seok, S.V. Prasad and Y. Kim. 2011a. Sound stress alters physiological processes in digestion and immunity and enhances insecticidal susceptibility of Spodoptera exigua. Kor. J. Appl. Entomol. 50: 39-46.   DOI
11 Park, J., S.V. Prasad and Y. Kim. 2011b. Effects of sound stress on physiological processes of the American leafminer, Liriomyza trifolii, and proteomic analysis. Kor. J. Appl. Entomol. 50: 131-139.   과학기술학회마을   DOI   ScienceOn
12 Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase $A_{2}$using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109.   DOI   ScienceOn
13 SAS Institute, Inc. 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
14 Seok, J., T. Kang and Y. Kim. 2010. Sound stress induces developmental alterations and enhances insecticide susceptibility in the green peach aphid, Myzus persicae. Kor. J. Pestic. Sci. 14: 415-420.   과학기술학회마을
15 Sismondo, E. 1980. Physical characteristics of the drumming of Meconema thalassinum. J. Insect Physiol. 26: 209-212.   DOI   ScienceOn
16 Gäde, G., K.H. Hoffmann and J.H. Spring. 1997. Hormonal regulation in insects: facts, gaps and future direction. Physiol. Rev. 77: 963-1032.   DOI
17 Shrestha, S., Y. Park, D. Stanley and Y. Kim. 2010. Genes encoding phospholipase $A_{2}$ mediate insect nodulation reactions to bacterial challenge. J. Insect Physiol. 56: 324-332.   DOI
18 Son, Y., J. Hwang and Y. Kim. 2012. Functional study of the gene encoding apolipophorin III in development and immune responses in the beet armyworm, Spodoptera exigua. J. Asia Pac. Entomol. 15: 106-112.   과학기술학회마을   DOI
19 Feder, M.E. and G.E. Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282.   DOI   ScienceOn
20 Goh, H.G., S.G. Lee, B P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
21 Halwani, A.E. and G.B. Dunphy. 1999. Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity. Dev. Comp. Immunol. 23: 563-570.   DOI
22 Halwani, A.E., D.F. Niven and G.B. Dunphy. 2000. Apolipophorin- III and the interactions of lipoteichoic acid with the immediate immune responses of Galleria mellonella. J. Invertebr. Pathol. 76: 233-241.   DOI   ScienceOn
23 Hartl, F.U. and M. Hayar-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858.   DOI   ScienceOn
24 Haskell, P.T. 1957. Stridulation and associated behaviour in certain Orthoptera. I. Analysis of the stridulation of, and behaviour between males. Anim. Behav. 5: 139-148.   DOI
25 Adamo, S.A., J.L. Roberts, R.H. Easy and N.W. Ross. 2008. Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. J. Exp. Biol. 211: 531-538.   DOI
26 Jang, Y. 2011. Insect communication: concepts, channels and contexts. Kor. J. Appl. Entomol. 50: 383-393.   DOI
27 Khasar, S.G., P.G. Green and J.D. Leine. 2005. Repeated sound stress enhances inflammatory pain in the rat. Pain 116: 79-86.   DOI
28 Kim, J. and Y. Kim. 2011. Three metabolites from an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit larval development of Spodoptera exigua (Lepidoptera: Noctuidae) by inhibiting a digestive enzyme, phospholipase $A_{2}$. Insect Sci. 18: 282-288.   DOI
29 Applebaum, S.W. 1985. Biochemistry of digestion. pp. 279-311. In Comprehensive insect physiology, biochemistry and pharmacology, vol. 4, eds. by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, UK.
30 Arrese, E.L., L.E. Canavoso, Z.E. Jouni, J.E. Pennington, K. Tsuchida and M.A. Wells. 2001. Lipid storage and mobilization in insects: current status and future directions. Insect Biochem. Mol. Biol. 31: 7-17.   DOI   ScienceOn
31 Dennis, E.A. 1994. Diversity of group types, regulation and function of phospholipase $A_{2}$. J. Biochem. 269: 13057-13060.
32 Baker, J.E. and S.M. Woo. 2005. Purification, partial characterization, and postembryonic levels of amylases from Sitophilus oryzae and Sitophilus granarius. Arch. Insect Biochem. Physiol. 2: 415-428.
33 Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 71: 248-254.