DOI QR코드

DOI QR Code

Evaluation of radical scavenging and diasestive enzyme inhibitory capacities of peach twigs fraction extract (Prunus persica L. Bastch)

복숭아 나뭇가지 분획추출물의 라디칼 소거 및 소화효소 저해활성 평가

  • Youjeoung Lee (Department of Food Science and Biotechnology, Daegu University) ;
  • Gyeong Han Jeong (Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Ju Yeon Hong (Department of Food Nutrition, Daegu Haany University) ;
  • Tae Hoon Kim (Department of Food Science and Biotechnology, Daegu University)
  • 이유정 (대구대학교 식품공학과) ;
  • 정경한 (한국원자력연구원 첨단방사선연구소 방사선바이오연구부) ;
  • 홍주연 (대구한의대학교 식품영양학과) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2022.11.30
  • Accepted : 2022.12.23
  • Published : 2023.02.28

Abstract

We investigated the free radical scavenging and digestive enzyme inhibitory activities of the hot water extract of peach twig (Prunus persica L. Bastch). This extract of the peach twigs was further split up into n-hexane, ethyl acetate (EtOAc), and n-butyl alcohol(n-BuOH), which resulted in three solvent-soluble fractions. Free radical scavenging activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) assay systems, while hypoglycemic effect of the peach twig extract and the solvent-soluble fractions were tested using α-glucosidase and α-amylase inhibition assays. Accordingly, the EtOAc layer showed a greater free radical scavenging activity compared to other solvent-soluble fractions. Furthermore, based on the α-glucosidase and α-amylase assays, the IC50 values were determined to be 38.2±1.6 and 69.6±6.1 ㎍/mL for the EtOAc-soluble fractions, respectively. Taken together, these results suggest that the fractions obtained from the peach twig extract can be considered as a potential source of natural antioxidant and hypoglycaemic constituents.

본 연구에서는 복숭아 나뭇가지를 이용하여 열수 추출하고 얻어진 추출물에 대해 유기용매를 이용하여 극성별 분획을 실시하였으며, 열수추출물 및 분획물의 항산화 활성과 관련된 총페놀 함량, DPPH 및 ABTS+ 라디칼 소거능, α-glucosidase 및 α-amylase 저해능을 측정하였다. DPPH 라디칼 소거능 측정에서는 페놀성 물질의 함량을 가장 많이 나타낸 EtOAc 가용부의 IC50값이 3.82±1.6 ㎍/mL로 가장 우수한 활성을 나타내었고, ABTS+ 라디칼 소거활성 평가에서도 EtOAc 분획물에서 IC50값이 16.5±0.7 ㎍/mL로 강한 라디칼 소거활성을 나타내었다. 항당뇨 활성과 관련된 효소인 α-glucosidase 및 α-amylase 저해능 평가에서도 우수한 라디칼소거능을 나타낸 EtOAc 분획물에서 IC50값이 각 38.2±1.6 및 69.6±6.1 ㎍/mL로 다른 유기용매 분획물에 비해 우수한 저해 활성임을 확인하였다. 이러한 결과는 복숭아 나뭇가지 추출물이 항산화 및 항당뇨 효능을 가지며, 새로운 천연물 유래의 기능성 신소재 발굴을 위한 기초자료로 이용 가능할 것으로 사료된다.

Keywords

Acknowledgement

This research was supported (in part) by the Daegu University, 2021.

References

  1. Anagnostopoulou MA, Kefalas P, Papageorgiou VP, Assimopoulou AN, Boskou D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem, 94, 19-25 (2006) https://doi.org/10.1016/j.foodchem.2004.09.047
  2. Attaallah R, Elfadil D, Amine A. Screening study of enzymatic inhibition of medicinal plant for the treatment of diabetes using a glucometer biosensor approach and optical method. J Herb Med, 28, 100441 (2021)
  3. Bento C, Goncaves AC, Silva B, Silva LR. Peach (Prunus persica): Phytochemicals and health benefits. Food Rev Int, 38, 1703-1734 (2022) https://doi.org/10.1080/87559129.2020.1837861
  4. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  5. Choi Y, Kim M, Shin JJ, Park JM, Lee J. The antioxidant activities of the some commercial teas. J Korean Soc Food Sci Nutr, 32, 723-727 (2003) https://doi.org/10.3746/jkfn.2003.32.5.723
  6. Derosa G, Maffioli P. α-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci, 8, 899-906 (2012) https://doi.org/10.5114/aoms.2012.31621
  7. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM. Comparative study of antioxidant prperties and total phenolic content of 30 plant extracts of industrial Interest using DPPH, ABTS, FRAP, SOD and ORAC asssays. J Agr Food Chem, 57, 1768-1774 (2009) https://doi.org/10.1021/jf803011r
  8. Fang YZ, Yang S, Wu G. Free radicals antioxidants and nutrition. Nutrition, 18, 872-879 (2002) https://doi.org/10.1016/S0899-9007(02)00916-4
  9. Farag RS, Badei AZMA, Hewedi FM, EI Baroty GSA. Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J Am Oil Chem Soc, 66, 792-799 (1989) https://doi.org/10.1007/BF02653670
  10. Fukuda T, Ito H, Mukainaka T, Tokuda H, Nishino H, Yoshida T. Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol Pharm Bull, 26, 271-273 (2003) https://doi.org/10.1248/bpb.26.271
  11. Gao X, Bjor L, Trajkovski V, Uggla M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test system. J Sci Food Agr, 80, 2021-2027 (2000) https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  12. Halliwell B, Aruoma OI. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett, 281, 9-19 (1991) https://doi.org/10.1016/0014-5793(91)80347-6
  13. Israili ZH. Advances in the treatment of type 2 diabetes mellitus. Am J Ther, 18, 117-152 (2011) https://doi.org/10.1097/MJT.0b013e3181afbf51
  14. Jeong KH, Ji YS, Kil KJ, Yoo JH. Antioxidant effects of ethanol extracts from different parts of Portulacae herba. Kor J Herbol, 34, 59-65 (2019)
  15. Joo SY. Comparison of Prunus yedoensis Matsumura bark ethanol extract and solvent fraction antioxidant activities. Korean J Food Sci Technol, 52, 350-356 (2020)
  16. Kawamura-Konishi Y, Watanabe N, Saito M, Nakajima N, Sakaki T, Katayama T, Enomoto T. Isolation of a new phlorotannin a potent inhibitor of carbohydrate-hydrolyzing enzymes from the brown alga Sargassum patens. J Agr Food Chem, 6, 5565-5570 (2012) https://doi.org/10.1021/jf300165j
  17. Kihara Y, Ogami Y, Tabaru A, Unoki H, Otsuki M. Safe and effective treatment of diabetes mellitus associated with chronic liver diseases with an alpha-glucosidase inhibitor acabose. J Gastroenterol, 32, 777-782 (1997) https://doi.org/10.1007/BF02936954
  18. Kim B, Kim KW, Lee S, Jo C, Lee K, Ham I, Choi HY. Endothelium-dependent vasorelaxant effect of Prunus persica Branch on isolated rat thoracic aorta. Nutrients, 11, 1816-1827 (2019) https://doi.org/10.3390/nu11081816
  19. Kim TH. A novel α-glucosidase inhibitory constituent from Uncaria gambir. J Nat Med, 70, 811-815 (2016) https://doi.org/10.1007/s11418-016-1014-0
  20. Kosar S, Fatima I, Mahmood A, Ahmed R, Malik A, Talib S, Chouhdary M. Purunusides A-C, α-glucosidase inhibitory homoisoflavone glucosides from Prunus domestica. Arch Pharm Res, 32, 1705-1710 (2009) https://doi.org/10.1007/s12272-009-2207-9
  21. Lee YR, Yoon N. Anti-oxidative and anti-diabetic effects of methanol extracts from medicainal plants. J Korean Soc Food Sci Nutr, 44, 681-686 (2015) https://doi.org/10.3746/jkfn.2015.44.5.681
  22. Liao X, Greenspan P, Pegg RB. Characterizing the phenolic constituents and antioxidant capacity of Georgia peaches. Food Chem, 271, 345-353 (2019) https://doi.org/10.1016/j.foodchem.2018.07.163
  23. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Rev, 4, 118-126 (2010) https://doi.org/10.4103/0973-7847.70902
  24. Matsuda H, Morikawa T, Ishiwada T, Managi H, Kagawa M, Higashi Y, Yoshikawa M. Medical flowers VIII radical scavenging constituents from the flowers of Prunus mume: Structure of prunose III. Chem Pharm Bull, 51, 440-443 (2003) https://doi.org/10.1248/cpb.51.440
  25. Mokrani A, Madani K. Effect of solvent time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep Purif Technol, 162, 68-76 (2016) https://doi.org/10.1016/j.seppur.2016.01.043
  26. Nakagawa T, Allam A, Ohnuki K, Shimizu K. Biological activities of extracts from different parts of two cultivars of Prunus persica 'Akatsuki' and 'Fastigiata'. Nat Prod Commun, 13, 1293-1296 (2018) https://doi.org/10.1177/1934578X1801301015
  27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med, 26, 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  28. Sang S, Lapsley K, Jeong WS, Lachance PA, Ho CT, Rosen RT. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). J Agr Food Chem, 50, 2459-2463 (2002) https://doi.org/10.1021/jf011533+
  29. Schwarz K, Mertz W. Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys, 85, 292-295 (1959) https://doi.org/10.1016/0003-9861(59)90479-5
  30. Shirosaki M, Goto Y, Hirroka S, Masuda H, Koyama T, Yazawa K. Peach leaf contains multiflorin A as a potent inhibitor of glucose absorption in the small intestine in mice, Biol Pharm Bull, 35, 1264-1268 (2012) https://doi.org/10.1248/bpb.b12-00058
  31. Song W, Qin ST, Fang FX, Gao ZJ, Liang DD, Liu LL, Tian HT, Yang HB. Isolation and purification of condensed tannin from the leaves and twings of Prunus ceraifera and its structure and bioactivites. Appl Biochem Biotech, 185, 464-475 (2018)
  32. Tsujimoto T, Shioyama E, Moriya K, Kawaratani H, Shirai Y, Toyohara M, Mitoro A, Yamao J, Fujii H, Fukui H. Pneumatosis cystoides intestinalis following alpha-glucosidase inhibitor treatment: A case report and review of the literature. World J Gastroenterol, 14, 6087-6092 (2008) https://doi.org/10.3748/wjg.14.6087
  33. Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agr Food Chem, 46, 4113-4117 (1998) https://doi.org/10.1021/jf9801973