• Title/Summary/Keyword: Diffusion Device

Search Result 336, Processing Time 0.023 seconds

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Multifunctional Transdermal Diffusion Test System (다기능 경피 확산 테스트 시스템 설계 및 제작)

  • Gao, Mengyan;Jin, Hu;Piao, Xiang Fan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.8-15
    • /
    • 2020
  • The diffusion cell method is the main technique employed for the in vitro diffusion test of transdermal drug delivery preparations. Most existing transdermal diffusion devices use a water bath heating structure and direct current motor magnetic stirrer. However, these devices are confronted with problems, such as large volume, incompatible vertical and horizontal diffusion cells, few diffusion cell sets, and poor reliability. To overcome these deficiencies, the system adopts a dry heating method and uses a rotating magnetic field generated by the electromagnetic stirrer to drive the magnetic stirrer. Accordingly, the resulting device is characterized by a simple structure and small volume, convenient operation, compatible vertical and horizontal diffusion cells, and numerous diffusion cell sets. The reliability and practicability of the system is verified by the in vitro percutaneous permeability test of the bisoprolol patch.

Effects of the ESD Protection Performance on GPNS(Gate to Primary N+ diffusion Space) Variation in the NSCR_PPS Device (NSCR_PPS 소자에서 게이트와 N+ 확산층 간격의 변화가 정전기 보호성능에 미치는 영향)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.6-11
    • /
    • 2015
  • The ESD(electrostatic discharge) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different GPNS(Gate to Primary $N^+$ Diffusion Space) structure was discussed for high voltage I/O applications. A conventional NSCR_PPS standard device with FPW(Full P-Well) structure and non-CPS(Counter Pocket Source) implant shows typical SCR-like characteristics with low on-resistance(Ron), low snapback holding voltage(Vh) and low thermal breakdown voltage(Vtb), which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified PPW(Partial P-Well) structure and optimal CPS implant demonstrate the improved ESD protection performance as a function of GPNS variation. GPNS was a important parameter, which is satisfied design window of ESD protection device.

Transient Simulation of CMOS Breakdown characteristics based on Hydro Dynamic Model (Hydro Dynamic Model을 이용한 CMOS의 파괴특성의 Transient Simulation해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.39-43
    • /
    • 2002
  • In present much CMOS devices used in VLSI circuit and Logic circuit. With increasing a number of device in VLSI, the confidence becomes more serious. This paper describe the mechanism of breakdown on CMOS, especially n-MOS, based on Hydro Dynamic model with device self-heating. Additionally, illustrate the CMOS latch-up characteristics on simplified device structure on this paper.

  • PDF

Diffusion or confusion of innovation - Smart clothing potential adopters' perspectives - (혁신의 확산 혹은 혼란 - 스마트 의류 잠재적 채택자 관점 -)

  • Lee, Kyu-Hye;Ju, Naan
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.2
    • /
    • pp.157-171
    • /
    • 2018
  • As the next generation of smartphone and tablet computers, wearable devices are currently being developed and available in market in various forms. Smart clothing is a wearable device that holds the greatest potential for future development but low in market penetration. This study was designed to identify factors that influence adoption and diffusion of smart clothing. In-depth interviews with potential consumers who were knowledgeable about and interested in smart clothing were conducted. A semantic network analysis method was used. The results showed that consumers perceived smart clothing as a garment rather than as a type of wearable device and had a positive perception of smart apparel as more convenient and advanced than functional apparel. At the same time, however, consumers had a negative perception of smart clothing as unnecessary, ugly, and injurious to health. Consumers also worried that wearing smart apparel over long periods of time would negatively impact their health. Factors affecting resistance to smart apparel included low utility, perceived risk, and lack of aesthetic completeness. Usefulness and convenience were factors that affected the acceptance of smart clothing. The innovativeness of the product was more influential than consumer innovativeness in the process of adoption and diffusion of smart clothing.

Flow Characteristics Analysis of the Decontamination Device with Mixing and Diffusion Using Radio-Isotopes Tracer (방사성 동위원소를 이용한 제염제 혼합확산장치의 유동특성분석)

  • Oh, Daemin;Kang, Sungwon;Kim, Youngsug;Jung, Sunghee;Moon, Jinho;Park, Jangguen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.282-287
    • /
    • 2017
  • The purpose of this study was predicted the effects of mixing and diffusion due to the operation of the apparatus before the development of the mixed diffusion device for the decontamination absorbent to minimize the influence of contaminant inflow due to radiation accident. The tracer used for the flow characteristics was $^{68}Ga$, $^{99m}Tc$, which is a radioactive isotope, and 2 inch NaI radiation detector was used to detect it. The impeller of the decontamination mixed diffusion system applied to this study was made into three types and the mixing diffusion effect was compared. As a result of analyzing the flow characteristics of the radio-isotope with decontamination mixed diffusion device, mixing, diffusion and flow pattern were obtained. The radial mixing type impeller was able to diffuse to the water surface by the upflow flow, and the fin structure was adjusted for finding optimal conditions. The model 3 type consists of a fin guiding part and an auxiliary fin so that the diffusion speed is higher than that of other types of impellers. It also showed a short time to reach complete mixing.

Clinical Analysis Comparing Efficacy between a Distal Filter Protection Device and Proximal Balloon Occlusion Device during Carotid Artery Stenting

  • Lee, Jong Hyeok;Sohn, Hee Eon;Chung, Seung Young;Park, Moon Sun;Kim, Seong Min;Lee, Do Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.4
    • /
    • pp.316-320
    • /
    • 2015
  • Objective : The main concern during transfemoral carotid artery stenting (CAS) is preventing cerebral embolus dislodgement. We compared clinical outcomes and intraprocedural embolization rates of CAS using a distal filter protection device or proximal balloon occlusion device. Methods : From January 2011 to March 2015, a series of 58 patients with symptomatic or asymptomatic internal carotid artery stenosis ${\geq}70%$ were treated with CAS with embolic protection device in single center. All patients underwent post-CAS diffusion-weighted magnetic resonance imaging (DW-MRI) to detect new ischemic lesions. We compared clinical outcomes and postprocedural embolization rates. Results : CAS was performed in all 61 patients. Distal filter protection success rate was 96.6% (28/29), whose mean age was 70.9 years, and mean stenosis was 81%. Their preprocedural infarction rate was 39% (11/28). Subsequent DW-MRI revealed 96 new ischemic lesions in 71% (20/28) patients. In contrast, the proximal balloon occlusion device success rate was 93.8% (30/32), whose mean age was 68.8 years and mean stenosis was 86%. Preprocedure infarction rate was 47% (14/30). DW-MRI revealed 45 new ischemic lesions in 57% (17/30) patients. Compared with distal filter protection device, proximal balloon occlusion device resulted in fewer ischemic lesions per patient (p=0.028). In each group, type of stent during CAS had no significant effect on number of periprocedural embolisms. Only 2 neurologic events occurred in the successfully treated patients (one from each group). Conclusion : Transfemoral CAS with proximal balloon occlusion device achieves good results. Compared with distal filter protection, proximal balloon occlusion might be more effective in reducing cerebral embolism during CAS.

An Analysis of Hall field in the Base Region of Magnetotransistors Using the Diffusion Model (확산모델을 이용한 자기트랜지스터의 베이스 영역에서의 홀 전계 해석)

  • 이승기;강욱성;한민구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1127-1134
    • /
    • 1994
  • The analytical model for the induced Hall field in the magnetotransistor considering the diffusion of carriers has been proposed and verified by experiment and simulation. Previous models for the induced Hall field in the magnetotransistor do not consider the influence of the diffusion carrier transport. However, the carrier diffusion in the base region of magnetotransistors cannot be neglected and should be considered to evaluated the Hall field in the magnetotransistors accurately. We have measured the Hall voltage in the base region of the fabricated magnetotransistors. The measured values have been compared with the numerical results evaluated from our diffusion model as well as the calculated results from the conventional model. The evaluated Hall voltage from the diffusion model agrees well with the measured values while the sign of the Hall voltage calculated by the conventional model is opposite to that of the measured values in the saturation region. This discrepancy is due to the fact that the diffusion model considers the carrier diffusion while the conventional one does not. The Hall field model including the influence of carrier diffusion may be an important tool to optimize the device structure and to understand the operating principle of the magnetotransistor.

A evaluation study of a fire smoke diffusion delay device installed in a great depth underground double deck tunnel (대심도 복층터널에 설치 가능한 화재연기 확산지연장치 성능 평가 연구)

  • Shin, Tae-Gyun;Moon, Jung-Joo;Yang, Yong-Won;Lee, Yun-Taek
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.225-234
    • /
    • 2018
  • Domestic urban areas are experiencing serious traffic congestion problems due to continuous population growth and increased traffic volume. In order to solve the problem of traffic congestion, the study of great depth underground double deck tunnels using underground space is being actively carried out in the urban areas. The characteristics of great depth underground double deck tunnels are low in cross section, so the spread of fire smoke is expected to spread faster than the road tunnel in case of fire. Therefore, it is necessary to provide a fire smoke delay device which delays the spread of fire smoke when a fire occurs in a tunnels. In the previous study, the diffusion effect was analyzed according to the blocking area when the fire smoke spread delay device was operated through the 3D CFD in the study of preventing the smoke spread in the case of the tunnel fire. A study on fire smoke diffusion delay device using spring elasticity which is excellent in applicability to a tunnel and economical value is studied. In this study, fire smoke spread delay system was developed to fire smoke delay was experimentally analyzed. Fire smoke delay effect of fire smoke delay device appeared. Therefore, it is considered that the can minimize the damage of the victims when installed in the great depth underground double deck tunnels.

Characteristics of the electrospraying combustion using grooved nozzle (홈노즐을 이용한 정전분무 확산 연소 특성에 관한 연구)

  • Kim, Woo-Jin;Kim, Kyoung-Tae;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2366-2371
    • /
    • 2007
  • Spray combustion characteristics of a conducting fuel electrospray have been studied for clean combustion technology. The multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. Charged micro droplets can be obtained in almost uniform size during operating the electrospray in the cone-jet mode. This experiment device set up the multiplexed grooved nozzle system with the extractor. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. This electrospray system was applied to the diffusion combustion. It is the first step to discover the diffusion combustion characteristics of the electrospray. In case of the single grooved nozzle electrospray, the diffusion flames are occurred at each jet of grooved mode and they are quite stable. The exhaust gas analysis was indicated that there is the critical point which can make very stable diffusion combustion.

  • PDF