• Title/Summary/Keyword: Diffusion Bonding

Search Result 266, Processing Time 0.026 seconds

Interfacial Reaction of Ag Bump/Cu Land Interface for B2it Flash Memory Card Substrate (B2it 플래시 메모리 카드용 기판의 Ag 범프/Cu 랜드 접합 계면반응)

  • Hong, Won-Sik;Cha, Sang-Suk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • After flash memory card(FMC) was manufactured by $B^2it$ process, interfacial reaction of silver bump with thermal stress was studied. To investigate bonding reliability of Ag bump, thermal shock and thermal stress tests were conducted and then examined on the crack between Cu land and Ag bump interface. Diffusion reaction of Ag bump/Cu land interface was analyzed using SEM, EDS and FIB. The Ag-Cu alloy layer due to the interfacial reaction was formed at the Ag/Cu interface. As the diffusivity of Ag ${\rightarrow}$ Cu is faster than Cu ${\rightarrow}$ Ag, a lot of (Cu, Ag) alloy layers were observed at the Cu layer than Ag. These alloy layers contributed to increase the Cu-Ag bonding strength and its reliability.

Reaction between Calcium-doped Lanthanum Chromite and Yttria Stabilized Zirconia (칼슘이 첨가된 란탄-아크롬산 염과 이트리아 안정화 지르코니아 계면간의 반응)

  • Choe, Jin-Sam
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.460-464
    • /
    • 2001
  • The ceramic diffusion coupling with the green body of calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$CLC- G) and sintered calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$ CLC) by Pechini's method on yttria stabilized zirconia(YSZ) plate has been investigated. The X-ray diffraction pattern of CLC sides at the reacted CLC-G/ CLC and CLC/YSZ interface were identified as La$_{1-x}$ Ca$_{x}$CrO$_3$ and the unreacted YSZ side was cubic-ZrO$_2$ at the treated condition, 1300~1500 C for 10 hr in air, respectively. The order of migration components between CLC/YSZ interface was Zr>La>>Cr>>>Ca and these changes were not dependent upon the treated conditions. The grain shape and size at the interface of CLC-G/CLC was appeared to have a uniform distribution with increasing temperature. The bonding reaction of YSZ/CLC was occurred without a large amount change of the compositions in SEM photos.os.otos.os.

  • PDF

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

Carbon diffusion behavior and mechanical properties of carbon-doped TiZrN coatings by laser carburization (레이저 침탄된 TiZrN 코팅에서 탄소확산거동과 기계적 특성)

  • Yoo, Hyunjo;Kim, Taewoo;Kim, Seonghoon;Jo, Ilguk;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • This study was investigated in carbon diffusion behavior of laser-carburized TiZrN coating layer and the changes of mechanical properties. The carbon paste was deposited on TiZrN coatings, and the laser was irradiated to carburize into the coatings. The XRD peak corresponding to the (111) plane shifted to a lower angle after the carburization, showing the lattice expansion by doped carbon. The decreased grain size implied the compression by the grain boundary diffusion of carbon. The XPS spectra for the bonding states of carbon was analyzed that carbon was substitute to nitrogen atoms in TiZrN, as carbide, through the thermal energy of laser. In addition, the combination of sp2 and sp3 hybridized bonds represented the formation of an amorphous carbon. The cross-sectional TEM image and the inverse FFT of the TiZrN coating after carburizing were observed as the wavy shape, confirming the amorphous phase located in grain boundaries. After the carburization, the hardness increased from 34.57 GPa to 38.24 GPa, and the friction coefficient decreased by 83 %. In particular, the ratio of hardness and elastic modulus (H/E) which is used as an index of the elastic recovery, increased from 0.11 to 0.15 and the wear rate improved by 65 %.

Effect of the Degree of Cold Working on the Microstructures for TiNi/6061Al Composites by Permanent mold Casting (금형주조법에 의한 TiNi/6061Al 복합재료의 미세조직에 미치는 냉간가공도의 영향)

  • Park, Seong-Gi;Sin, Sun-Gi;Park, Gwang-Hun;Seong, Jang-Hyeon;Park, Yeong-Cheol;Lee, Gyu-Chang;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1028-1034
    • /
    • 2001
  • The 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting. The microstructures and tensile test for the cold rolled composites with maximum 50% reduction ratio were investigated. In the case of TiNi fiber with 2mm interval in preform, the interface bonding of fabricated composites were good, interface diffusion layer of this composites was made by the mutual diffusion. Transverse section of TiNi fiber was decreased with increasing reduction ratio and longitudinal section of TiNi fiber showed multiple wave phenomenon. And the tensile strength of composites at 38% reduction ratio was the most high. In the case of over 38% reduction ratio, the decrease of the tensile strength was due to TiNi fiber rupture by excess working. The fracture mode was appeared brittle fracture with increasing reduction ratio.

  • PDF

The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.2-289.2
    • /
    • 2016
  • In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

  • PDF

Properties of Glass-Ceramics in the System CaO-TiO2-SiO2 with the Additives of Al2O3, ZrO2 and B2O3 for Use in the Solid Oxide Fuel Cells.

  • Lee, Jun-Suk;Park, Min-Jin;Shin, Hyun-Ick;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.336-340
    • /
    • 1999
  • Glasses in the system $CaO-TiO_2-SiO_2-Al_2O_3-ZrO_2-B_2O_3$ were investigated to find the glass seal compositions suitable for use in the planar solid oxide fuel cell (SOFC). Glass-ceramics prepared from the glasses by one-stage heat treatment at $1,000^{\circ}C$ showed various thermal expansion coefficients (i,e., $8.6\times10^{-6^{\circ}}C^{-1}$ to $42.7\times10^{-6^{\circ}}C^{-1}$ in the range 25-$1,000^{\circ}C$) due to the viscoelastic response of glass phase. The average values of contact angles between the zirconia substrate and the glass particles heated at 1,000-$1,200^{\circ}C$ were in the range of $131^{\circ}\pm4^{\circ}$~$137^{\circ}\pm9^{\circ}$, indicating that the glass-ceramic was in partial non-wetting condition with the zirconia substrate. With increasing heat treatment time of glass samples from 0.5 to 24 h at $1,100^{\circ}C$, the DC electrical conductivity of the resultant glass-ceramics decreased from at $800^{\circ}C$. Isothermal hold of the glass sample at $1100^{\circ}C$ for 48h resulted in diffusion of Ca, Si, and Al ions from glass phase into the zirconia substrate through the glass/zirconia bonding interface. Glass phase and diffusion of the moving ion such as $Ca^{2+}$ in glass phase is responsible for the electrical conduction in the glass-ceramics.

  • PDF

Transport Characteristics of Alcohol Solutes through Copolymer Hydrogel Membranes Containing Poly(2-Hydroxyethylmethacrylate) (Poly(2-Hydroxyethylmethacrylate)를 포함한 공중합체 수화겔막에 대한 알콜용질의 투과특성)

  • Park, Yu Mi;Kim, Eun Sik;Seong, Yong Gil
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 1990
  • Three kinds of hydrogel membranes were prepared by the copolymerization of 2-hydroxyethylmethacrylate (HEMA) with acrylamide, N, N-dimethylamide and methylmethacrylate in the presence of solvent and crosslinker respectively. The equilibrium water content, relative permeability and partition coefficient of the membranes for alcohol solutes were measured. It has been found that the permeation of organic solute occurs through the water-filled regions in the hydrogel membrane, and that the gpermeability coefficient of organic solute depends on the molecular size. But the permeability of organic solute was controlled by the interaction of solute-membrane at the low water content. By the partition data, it has been shown that the partition of solute is only controlled by hydrophobic interaction between solute and membrane. The diffusion coefficient data were interpreted on the basis of water-solute interaction. It has been found that the diffusion of organic solute is determined by the free volume of water in the membrane, and that hardly depends on polarity-polarizability and hydrogen bonding ability between water and solute.

  • PDF

Effect of Intermetallic Compounds Growth Characteristics on the Shear Strength of Cu pillar/Sn-3.5Ag Microbump for a 3-D Stacked IC Package (3차원 칩 적층을 위한 Cu pillar/Sn-3.5Ag 미세범프 접합부의 금속간화합물 성장거동에 따른 전단강도 평가)

  • Kwak, Byung-Hyun;Jeong, Myeong-Hyeok;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.775-783
    • /
    • 2012
  • The effect of thermal annealing on the in-situ growth characteristics of intermetallics (IMCs) and the mechanical strength of Cu pillar/Sn-3.5Ag microbumps are systematically investigated. The $Cu_6Sn_5$ phase formed at the Cu/solder interface right after bonding and grew with increased annealing time, while the $Cu_3Sn$ phase formed at the $Cu/Cu_6Sn_5$ interface and grew with increased annealing time. IMC growth followed a linear relationship with the square root of the annealing time due to a diffusion-controlled mechanism. The shear strength measured by the die shear test monotonically increased with annealing time. It then changed the slope with further annealing, which correlated with the change in fracture modes from ductile to brittle at a critical transition time. This is ascribed not only to the increasing thickness of brittle IMCs but also to the decreasing thickness of the solder, as there exists a critical annealing time for a fracture mode transition in our thin solder-capped Cu pillar microbump structures.