The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun (School of Electronic and Electrical Engineering, Sungkyunkwan University) ;
  • Park, Hyung-Youl (School of Electronic and Electrical Engineering, Sungkyunkwan University) ;
  • Park, Jin-Hong (School of Electronic and Electrical Engineering, Sungkyunkwan University)
  • Published : 2016.02.17

Abstract

In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

Keywords