Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.10.775

Effect of Intermetallic Compounds Growth Characteristics on the Shear Strength of Cu pillar/Sn-3.5Ag Microbump for a 3-D Stacked IC Package  

Kwak, Byung-Hyun (School of Material Science and Engineering, Andong National University)
Jeong, Myeong-Hyeok (School of Material Science and Engineering, Andong National University)
Park, Young-Bae (School of Material Science and Engineering, Andong National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.10, 2012 , pp. 775-783 More about this Journal
Abstract
The effect of thermal annealing on the in-situ growth characteristics of intermetallics (IMCs) and the mechanical strength of Cu pillar/Sn-3.5Ag microbumps are systematically investigated. The $Cu_6Sn_5$ phase formed at the Cu/solder interface right after bonding and grew with increased annealing time, while the $Cu_3Sn$ phase formed at the $Cu/Cu_6Sn_5$ interface and grew with increased annealing time. IMC growth followed a linear relationship with the square root of the annealing time due to a diffusion-controlled mechanism. The shear strength measured by the die shear test monotonically increased with annealing time. It then changed the slope with further annealing, which correlated with the change in fracture modes from ductile to brittle at a critical transition time. This is ascribed not only to the increasing thickness of brittle IMCs but also to the decreasing thickness of the solder, as there exists a critical annealing time for a fracture mode transition in our thin solder-capped Cu pillar microbump structures.
Keywords
intermetallics; metals; soldering; diffusion; microbumps;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. H. Lee, B. M. Chung, and J. Y. Huh, Korean. J. Met. Mater. 48, 1041 (2010).
2 S. C. Park, K. J. Min, K. H. Lee, Y. S. Jeong, and Y. B. Park, Met. Mater. Int. 17, 111 (2011).
3 E. J. Jang, J. W. Kim, B. Kim, T. Matthias, and Y. B. Park, Met. Mater. Int. 17, 105 (2011).
4 K. N. Chen, C. S. Tan, A. Fan, and R. Reif, Appl. Phys. Lett. 86, 011903 (2005).
5 H. Shimaamoto, Technical Trend of 3D Chip Stacked Previous Term MCP/SIP Next Term In, Proc. 57th ECTC workshop (2007).
6 M. Y. Kim, T. S. Oh, and T. S. Oh, Korean. J. Met. Mater. 48, 557 (2010).
7 R. R. Tummala, Fundamentals of Microsystems Packaging, New York, McGraw-Hill (2001).
8 K. N. Tu and K. Zeng, Mater. Sci. Eng. R34, 1 (2001).
9 T. S. Oh, K. Y. Lee, Y. H. Lee, and B. Y. Jung, Met. Mater. Int. 15, 479 (2009).
10 M. Ding, G Wang, B. Chao, P. S. Ho, P. Su, and T. Uehling, J. Appl. Phys. 99, 094906 (2006).
11 J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, J. Kor. Inst. Met. & Mater. 46, 310 (2008).
12 V. S. Rao, V. Kripseph, S. W. Yoon, D. Witarsa, and A. A. O. Tay, Proceedings of 6th Electronic Packing Technology Conference pp.444-449 (IEEE, 2004).
13 B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, J. Electron. Mater. 39, 2281 (2010).
14 G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, J. Electron. Mater. 38, 2228 (2009).
15 M. H. Jeong, G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, J. Electron. Mater. 39, 2368 (2010).
16 B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, Met. Mater. Int. 15, 815 (2009).
17 G. T. Lim, J. H. Lee, B. J. Kim, K. W. Lee, M. J. Lee, Y. C. Joo, and Y. B. Park, J. Microelectron. Package Soc. 14, 15 (2007).
18 M. H. Jeong, J. W. Kim, B. H. Kwak, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, Korean. J. Met. Mater. 49, 180 (2011).
19 J. W. Nah, J. O. Suh, and K. N. Tu, J. Appl. Phys. 100, 123513 (2006).
20 J. W. Kim and S. B. Jung, Met. Mater. Int. 16, 7 (2010).
21 J. M. Kim, J. S. Park, and K. T. Kim, Met. Mater. Int. 16, 657 (2010).
22 Y. M. Kim, K. M. Harr, and Y. H. Kim, Electron. Mater. Lett. 6, 151 (2010).
23 B. H. Lee, J. Park, S. J. Jeon, K. W. Kwon, and H. J. Lee, J. Electrochem. Soc. 157, H420 (2010).
24 Y. S. Lai, Y. T. Chiu, and J. Chen, J. Elecron. Mater. 37, 1624 (2008).
25 C. K. Lee, T. C. Chang, Y. J. Huang, H. C. Fu, J. H. Huang, Z. C. Hsiao, J. H. Lau, C. T. Ko, R. S. Cheng, P. C. Chang, K. S. Kao, Y. L. Lu, R. Lo, and M. J. Kao, Proc. 61st Electronic Components and Technology Conf. p.100 (2011).
26 K. Sakuma, K. Toriyama, H. Noma, K. Sueoka, N. Unami, J. Mizuno, S. Shoji, and Y. Orii, Proc. 61st Electronic Components and Technology Conf. p.7 (2011).
27 S. H. Lee, H. R. Roh, Z. G. CHEN, and Y. H. Kim, J. Elecron. Mater. 34, 1446 (2005).
28 B. H. Kwak, M. H. Jeong, J. W. Kim, B. H. Lee, H. J. Lee, and Y. B. Park, Microelectron. Eng. 89, 65 (2012).
29 K. N. Tu, Acta Metall. 21, (1973).
30 K. N. Tu, Solder Joint Technology, Materials, Properties, and Reliability, pp.59-71, Springer (2007).
31 D. A. Porter and K. E. Easterling, Phase Transformation in materials, 2nd edition, Chapman & Hall, London (1992).
32 S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, J. Electron. Mater. 28, 1209 (1999).
33 H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chenc, and V. L. Acoffa, Scr. Mater. 65, 642 (2011).
34 T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng. R49, 1 (2005).
35 M. H. Jeong, J. W. Kim, B. H. Kwak, and Y. B. Park, Microelectron. Eng. 89, 50 (2012).
36 D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, J. Electron. Mater. 26, 883 (1997).
37 C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phys. 100, 083702 (2006).
38 J. W. Yoon and S. B. Jung, J. Mater. Sci. 39, 4211 (2004).
39 S. S. Ha, J. Y. Sung, J. W. Yoon, and S. B. Jung, Microelectron. Eng. 88, 709 (2011).
40 Y. Jaradat, A. Qasaimeh, P. Kondos1, B. Arfaei, and P. Borgesen, Proc. 61st Electronic Components and Technology Conf. p.722 (2011)