DOI QR코드

DOI QR Code

Effect of Intermetallic Compounds Growth Characteristics on the Shear Strength of Cu pillar/Sn-3.5Ag Microbump for a 3-D Stacked IC Package

3차원 칩 적층을 위한 Cu pillar/Sn-3.5Ag 미세범프 접합부의 금속간화합물 성장거동에 따른 전단강도 평가

  • Kwak, Byung-Hyun (School of Material Science and Engineering, Andong National University) ;
  • Jeong, Myeong-Hyeok (School of Material Science and Engineering, Andong National University) ;
  • Park, Young-Bae (School of Material Science and Engineering, Andong National University)
  • 곽병현 (안동대학교 신소재공학부 청정.에너지소재기술연구센터) ;
  • 정명혁 (안동대학교 신소재공학부 청정.에너지소재기술연구센터) ;
  • 박영배 (안동대학교 신소재공학부 청정.에너지소재기술연구센터)
  • Received : 2012.02.07
  • Published : 2012.10.25

Abstract

The effect of thermal annealing on the in-situ growth characteristics of intermetallics (IMCs) and the mechanical strength of Cu pillar/Sn-3.5Ag microbumps are systematically investigated. The $Cu_6Sn_5$ phase formed at the Cu/solder interface right after bonding and grew with increased annealing time, while the $Cu_3Sn$ phase formed at the $Cu/Cu_6Sn_5$ interface and grew with increased annealing time. IMC growth followed a linear relationship with the square root of the annealing time due to a diffusion-controlled mechanism. The shear strength measured by the die shear test monotonically increased with annealing time. It then changed the slope with further annealing, which correlated with the change in fracture modes from ductile to brittle at a critical transition time. This is ascribed not only to the increasing thickness of brittle IMCs but also to the decreasing thickness of the solder, as there exists a critical annealing time for a fracture mode transition in our thin solder-capped Cu pillar microbump structures.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. H. Lee, B. M. Chung, and J. Y. Huh, Korean. J. Met. Mater. 48, 1041 (2010).
  2. S. C. Park, K. J. Min, K. H. Lee, Y. S. Jeong, and Y. B. Park, Met. Mater. Int. 17, 111 (2011).
  3. E. J. Jang, J. W. Kim, B. Kim, T. Matthias, and Y. B. Park, Met. Mater. Int. 17, 105 (2011).
  4. K. N. Chen, C. S. Tan, A. Fan, and R. Reif, Appl. Phys. Lett. 86, 011903 (2005).
  5. H. Shimaamoto, Technical Trend of 3D Chip Stacked Previous Term MCP/SIP Next Term In, Proc. 57th ECTC workshop (2007).
  6. M. Y. Kim, T. S. Oh, and T. S. Oh, Korean. J. Met. Mater. 48, 557 (2010).
  7. R. R. Tummala, Fundamentals of Microsystems Packaging, New York, McGraw-Hill (2001).
  8. K. N. Tu and K. Zeng, Mater. Sci. Eng. R34, 1 (2001).
  9. T. S. Oh, K. Y. Lee, Y. H. Lee, and B. Y. Jung, Met. Mater. Int. 15, 479 (2009).
  10. M. Ding, G Wang, B. Chao, P. S. Ho, P. Su, and T. Uehling, J. Appl. Phys. 99, 094906 (2006).
  11. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, J. Kor. Inst. Met. & Mater. 46, 310 (2008).
  12. V. S. Rao, V. Kripseph, S. W. Yoon, D. Witarsa, and A. A. O. Tay, Proceedings of 6th Electronic Packing Technology Conference pp.444-449 (IEEE, 2004).
  13. B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, J. Electron. Mater. 39, 2281 (2010).
  14. G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, J. Electron. Mater. 38, 2228 (2009).
  15. M. H. Jeong, G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, J. Electron. Mater. 39, 2368 (2010).
  16. B. J. Kim, G. T. Lim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, Met. Mater. Int. 15, 815 (2009).
  17. G. T. Lim, J. H. Lee, B. J. Kim, K. W. Lee, M. J. Lee, Y. C. Joo, and Y. B. Park, J. Microelectron. Package Soc. 14, 15 (2007).
  18. M. H. Jeong, J. W. Kim, B. H. Kwak, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, Korean. J. Met. Mater. 49, 180 (2011).
  19. J. W. Nah, J. O. Suh, and K. N. Tu, J. Appl. Phys. 100, 123513 (2006).
  20. J. W. Kim and S. B. Jung, Met. Mater. Int. 16, 7 (2010).
  21. J. M. Kim, J. S. Park, and K. T. Kim, Met. Mater. Int. 16, 657 (2010).
  22. Y. M. Kim, K. M. Harr, and Y. H. Kim, Electron. Mater. Lett. 6, 151 (2010).
  23. B. H. Lee, J. Park, S. J. Jeon, K. W. Kwon, and H. J. Lee, J. Electrochem. Soc. 157, H420 (2010).
  24. Y. S. Lai, Y. T. Chiu, and J. Chen, J. Elecron. Mater. 37, 1624 (2008).
  25. C. K. Lee, T. C. Chang, Y. J. Huang, H. C. Fu, J. H. Huang, Z. C. Hsiao, J. H. Lau, C. T. Ko, R. S. Cheng, P. C. Chang, K. S. Kao, Y. L. Lu, R. Lo, and M. J. Kao, Proc. 61st Electronic Components and Technology Conf. p.100 (2011).
  26. K. Sakuma, K. Toriyama, H. Noma, K. Sueoka, N. Unami, J. Mizuno, S. Shoji, and Y. Orii, Proc. 61st Electronic Components and Technology Conf. p.7 (2011).
  27. S. H. Lee, H. R. Roh, Z. G. CHEN, and Y. H. Kim, J. Elecron. Mater. 34, 1446 (2005).
  28. B. H. Kwak, M. H. Jeong, J. W. Kim, B. H. Lee, H. J. Lee, and Y. B. Park, Microelectron. Eng. 89, 65 (2012).
  29. K. N. Tu, Acta Metall. 21, (1973).
  30. K. N. Tu, Solder Joint Technology, Materials, Properties, and Reliability, pp.59-71, Springer (2007).
  31. D. A. Porter and K. E. Easterling, Phase Transformation in materials, 2nd edition, Chapman & Hall, London (1992).
  32. S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, J. Electron. Mater. 28, 1209 (1999).
  33. H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chenc, and V. L. Acoffa, Scr. Mater. 65, 642 (2011).
  34. T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng. R49, 1 (2005).
  35. M. H. Jeong, J. W. Kim, B. H. Kwak, and Y. B. Park, Microelectron. Eng. 89, 50 (2012).
  36. D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, J. Electron. Mater. 26, 883 (1997).
  37. C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phys. 100, 083702 (2006).
  38. J. W. Yoon and S. B. Jung, J. Mater. Sci. 39, 4211 (2004).
  39. S. S. Ha, J. Y. Sung, J. W. Yoon, and S. B. Jung, Microelectron. Eng. 88, 709 (2011).
  40. Y. Jaradat, A. Qasaimeh, P. Kondos1, B. Arfaei, and P. Borgesen, Proc. 61st Electronic Components and Technology Conf. p.722 (2011)