• Title/Summary/Keyword: Differentially Expressed Proteins

Search Result 247, Processing Time 0.025 seconds

Prediction of Exposure to 1763MHz Radiofrequency Radiation Using Support Vector Machine Algorithm in Jurkat Cell Model System

  • Huang Tai-Qin;Lee Min-Su;Bae Young-Joo;Park Hyun-Seok;Park Woong-Yang;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2006
  • We have investigated biological responses to radiofrequency (RF) radiation in in vitro and in vivo models. By measuring the levels of heat shock proteins as well as the activation of mitogen activated protein kinases (MAPKs), we could not detect any differences upon RF exposure. In this study, we used more sensitive method to find the molecular responses to RF radiation. Jurkat, human T-Iymphocyte cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 10 W/kg for one hour and harvested immediately (R0) or after five hours (R5). From the profiles of 30,000 genes, we selected 68 differentially expressed genes among sham (S), R0 and R5 groups using a random-variance F-test. Especially 45 annotated genes were related to metabolism, apoptosis or transcription regulation. Based on support vector machine (SVM) algorithm, we designed prediction model using 68 genes to discriminate three groups. Our prediction model could predict the target class of 19 among 20 examples exactly (95% accuracy). From these data, we could select the 68 biomarkers to predict the RF radiation exposure with high accuracy, which might need to be validated in in vivo models.

Characterization of H460R, a Radioresistant Human Lung Cancer Cell Line, and Involvement of Syntrophin Beta 2 (SNTB2) in Radioresistance

  • Im, Chang-Nim;Kim, Byeong Mo;Moon, Eun-Yi;Hong, Da-Won;Park, Joung Whan;Hong, Sung Hee
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.245-253
    • /
    • 2013
  • A radioresistant cell line was established by fractionated ionizing radiation (IR) and assessed by a clonogenic assay, flow cytometry, and Western blot analysis, as well as zymography and a wound healing assay. Microarray was performed to profile global expression and to search for differentially expressed genes (DEGs) in response to IR. H460R cells demonstrated increased cell scattering and acidic vesicular organelles compared with parental cells. Concomitantly, H460R cells showed characteristics of increased migration and matrix metalloproteinase activity. In addition, H460R cells were resistant to IR, exhibiting reduced expression levels of ionizing responsive proteins (p-p53 and ${\gamma}$-H2AX); apoptosis-related molecules, such as cleaved poly(ADP ribose) polymerase; and endoplasmic reticulum stress-related molecules, such as glucose-regulated protein (GRP78) and C/EBP-homologous protein compared with parental cells, whereas the expression of anti-apoptotic X-linked inhibitor of apoptosis protein was increased. Among DEGs, syntrophin beta 2 (SNTB2) significantly increased in H460R cells in response to IR. Knockdown of SNTB2 by siRNA was more sensitive than the control after IR exposure in H460, H460R, and H1299 cells. Our study suggests that H460R cells have differential properties, including cell morphology, potential for metastasis, and resistance to IR, compared with parental cells. In addition, SNTB2 may play an important role in radioresistance. H460R cells could be helpful in in vitro systems for elucidating the molecular mechanisms of and discovering drugs to overcome radioresistance in lung cancer therapy.

Differential Stringent Responses of Streptomyces coelicolor M600 to Starvation of Specific Nutrients

  • Ryu, Yong-Gu;Kim, Eun-Sook;Kim, Dae-Wi;Kim, Sung-Keun;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.305-312
    • /
    • 2007
  • This study focused on the involvement of the unusual nucleotide (p)ppGpp, a stringent factor, during the morphological and physiological differentiation of Streptomyces coelicolor. Two genes, relA and rshA, were disrupted to demonstrate the roles of the stringent factor in the differentiation. The intracellular concentration of (p)ppGpp in the wild-type (M600) and disrupted mutants was measured in relation to the intentional starvation of a specific nutrient, such as carbon, nitrogen, and phosphate or the in situ depletion of nutrients in a batch culture. As a result, it was found that the morphological characteristic of the ${\Delta}relA$ mutant was a bld phenotype forming condensed mycelia, whereas the ${\Delta}rshA$ mutant grew fast-forming spores and straightforward mycelia. In both mutants, the production of actinorhodin (Act) was completely abolished, yet the undecylprodigiosin (Red) production was increased. Intracellular (p)ppGpp was detected in the ${\Delta}relA$ mutant in the case of limited phosphate, yet not with limited carbon or nitrogen sources. In contrast, (p)ppGpp was produced in the ${\Delta}rshA$ mutant under limited carbon and nitrogen conditions. Therefore, (p)ppGpp in S. coelicolor was found to be selectively regulated by either the RelA or RshA protein, which was differentially expressed in response to the specific nutrient limitation. These results were also supported by the in situ ppGpp production during a batch culture. Furthermore, it is suggested that RelA and RshA are bifunctional proteins that possess the ability to both synthesize and hydrolyze (p)ppGpp.

Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components

  • Pak, Jhang Ho;Lee, Ji-Yun;Jeon, Bo Young;Dai, Fuhong;Yoo, Won Gi;Hong, Sung-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.379-387
    • /
    • 2019
  • Clonorchis sinensis is a carcinogenic human liver fluke that promotes hepatic inflammatory environments via direct contact or through their excretory-secretory products (ESPs), subsequently leading to cholangitis, periductal fibrosis, liver cirrhosis, and even cholangiocarcinoma (CCA). This study was conducted to examine the host inflammatory responses to C. sinensis ESPs and their putative protein components selected from C. sinensis expressed sequenced tag (EST) pool databases, including $TGF-{\beta}$ receptor interacting protein 1(CsTRIP1), legumain (CsLeg), and growth factor binding protein 2 (CsGrb2). Treatment of CCA cells (HuCCT1) with the ESPs or bacterial recombinant C. sinensis proteins differentially promoted the secretion of proinflammatory cytokines ($IL-1{\beta}$, IL-6, and $TNF-{\alpha}$) as well as anti-inflammatory cytokines (IL-10, $TGF-{\beta}1$, and $TGF-{\beta}2$) in a time-dependent manner. In particular, recombinant C. sinensis protein treatment resulted in increase (at maximum) of ~7-fold in $TGF-{\beta}1$, ~30-fold in $TGF-{\beta}2$, and ~3-fold in $TNF-{\alpha}$ compared with the increase produced by ESPs, indicating that CsTrip1, CsLeg, and CsGrb2 function as strong inducers for secretion of these cytokines in host cells. These results suggest that C. sinensis ESPs contribute to the immunopathological response in host cells, leading to clonorchiasis-associated hepatobiliary abnormalities of greater severity.

Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis

  • Sun, Chuanxi;Zhu, Tianyi;Zhu, Yuwei;Li, Bing;Zhang, Jiaming;Liu, Yixin;Juan, Changning;Yang, Shifa;Zhao, Zengcheng;Wan, Renzhong;Lin, Shuqian;Yin, Bin
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.56.1-56.17
    • /
    • 2022
  • Background: At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives: This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods: Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results: Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were "protein processing in endoplasmic reticulum," "retinol metabolism," and "glycine, serine, and threonine metabolism." Conclusions: The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a

  • Myoungsub, Kim;Dohui, Lee;Hyun Suk, Cho;Young-Soo, Chung;Hee Jin, Park;Ho Won, Jung
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.603-615
    • /
    • 2022
  • Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis

  • Myoung Hui Lee;Kyeong-Min Kim;Wan-Gyu Sang;Chon-Sik Kang;Changhyun Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.197-197
    • /
    • 2022
  • Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959,7946, and 14,205; and 22,895,13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress-and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity-were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerancea.

  • PDF

Exosomes from Tension Force-Applied Periodontal Ligament Cells Promote Mesenchymal Stem Cell Recruitment by Altering microRNA Profiles

  • Maolin Chang;Qianrou Chen;Beike Wang;Zhen Zhang;Guangli Han
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.202-214
    • /
    • 2023
  • Background and Objectives: To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration. Methods and Results: Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission. Conclusions: The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

Characterization of Protein Function and Differential Protein Expression in Soybean under Soaking Condition (Proteomics를 이용한 콩의 발아 전 침종처리에 따른 단백질 발현 양상 비교 분석)

  • Cho, Seong-Woo;Kim, Tae-Sun;Kwon, Soo-Jeong;Roy, Swapan Kumar;Lee, Chul-Won;Kim, Hong-Sig;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.114-122
    • /
    • 2015
  • Soybean is very useful crop to supply vegetable protein for human. However, cultivation arear of this economically important crop is gradually diminished in upland field. Hence, cultivation area of soybean is increased in paddy field. During the growth duration of soybean, excessive moisture injury is serious problem for sustainable production and supply. We investigated protein expression according to different period of seed soaking and germination after seed soaking. For comparison on expression of protein according to different condition, we performed two-dimensional electrophoresis. After electrophoresis analysis, we selected differentially expressed protein spots according to different condition such as soaking period and germination after soaking to identify protein function by using MALDI-TOF. Results revealed that pattern of expression of protein according to soaking period and germination after soaking were generally not different in major spots. However, degree of expression of protein in some protein spots was increased in accordance with decrease of soaking period. Especially, in Hwangkeum-Kong, Danyeop-Kon, and Pecking, the degree of expression of protein was remarkably increased for 4 days after soaking. But, according to germination after soaking, degree of expression of protein in germinated seeds of all cultivars was higher than un-germinated seeds. In results of MALDI-TOF analysis, specific proteins were identified by different soaking period such as Allergen Gly m Bd 28K, P24 oleosin isoform B. Also, in accordance with germination, degree of protein expression of the related protein, Gibberellin was increased in un-germinated seeds of Iksan-Kong. In ungerminated seeds of Sinpaldal-kong, proteins were identified as down-regulated by soaking such as ATP binding and Inhibitor II', proteinase.