Browse > Article

Differential Stringent Responses of Streptomyces coelicolor M600 to Starvation of Specific Nutrients  

Ryu, Yong-Gu (School of Biological Sciences, Seoul National University)
Kim, Eun-Sook (School of Biological Sciences, Seoul National University)
Kim, Dae-Wi (School of Biological Sciences, Seoul National University)
Kim, Sung-Keun (School of Biological Sciences, Seoul National University)
Lee, Kye-Joon (School of Biological Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.2, 2007 , pp. 305-312 More about this Journal
Abstract
This study focused on the involvement of the unusual nucleotide (p)ppGpp, a stringent factor, during the morphological and physiological differentiation of Streptomyces coelicolor. Two genes, relA and rshA, were disrupted to demonstrate the roles of the stringent factor in the differentiation. The intracellular concentration of (p)ppGpp in the wild-type (M600) and disrupted mutants was measured in relation to the intentional starvation of a specific nutrient, such as carbon, nitrogen, and phosphate or the in situ depletion of nutrients in a batch culture. As a result, it was found that the morphological characteristic of the ${\Delta}relA$ mutant was a bld phenotype forming condensed mycelia, whereas the ${\Delta}rshA$ mutant grew fast-forming spores and straightforward mycelia. In both mutants, the production of actinorhodin (Act) was completely abolished, yet the undecylprodigiosin (Red) production was increased. Intracellular (p)ppGpp was detected in the ${\Delta}relA$ mutant in the case of limited phosphate, yet not with limited carbon or nitrogen sources. In contrast, (p)ppGpp was produced in the ${\Delta}rshA$ mutant under limited carbon and nitrogen conditions. Therefore, (p)ppGpp in S. coelicolor was found to be selectively regulated by either the RelA or RshA protein, which was differentially expressed in response to the specific nutrient limitation. These results were also supported by the in situ ppGpp production during a batch culture. Furthermore, it is suggested that RelA and RshA are bifunctional proteins that possess the ability to both synthesize and hydrolyze (p)ppGpp.
Keywords
(p)ppGpp; relA; rshA; actinorhodin; clavulanic acid; cephamycin C;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Chakraburtty, R., J. White, E. Takano, and M. J. Bibb. 1996. Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol. Microbiol. 19: 357-368   DOI   ScienceOn
2 Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Path. 13: 156- 159   DOI
3 Gust, B., T. Kieser, and K. F. Chater. 2002. REDIRECT technology: PCR-targeting system in Streptomyces coelicolor
4 Jin, W., Y. G. Ryu, S. G. Kang, S. K. Kim, N. Saito, K. Ochi, S. H. Lee, and K. J. Lee. 2004. Two relA/spoT homologous genes are involved in the morphological and physiological differentiation of Streptomyces clavuligerus. Microbiology 150: 1485-1493   DOI   ScienceOn
5 Kim, S. Y. and J. Y. Cho. 2005. A modified PCR-directed replacement method using $\lambda$-red recombination function in Escherichia coli. J. Microbiol. Biotechnol. 15: 1346-1352   과학기술학회마을
6 Metzger, S., G. Schreiber, E. Aizenman, M. Cashel, and G. Glaser. 1989. Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J. Biol. Chem. 264: 21146-21152
7 Mittenhuber, G. 2001. Comparative genomics of prokaryotic GTP-binding proteins (the Era, Obg, EngA, ThdF (TrmE), YchF, and YihA families) and their relationship to eukaryotic GTB-binding (the DRG, ARF, RAB, RAN, RAS, and RHO families). J. Mol. Microbiol. Biotechnol. 3: 21-35
8 Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Doxorubicin productivity improvement by recombination Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71   과학기술학회마을
9 Sun, J. H., A. Hesketh, and M. J. Bibb. 2001. Functional analysis of relA and rshA, two relA/spot homologues of Streptomyces coelicolor A3(2). J. Bacteriol. 3488-3498
10 Yang, Y.-Y., X.-Q. Zhao, Y.-Y. Jin, J.-H. Huh, J.-H. Cheng, D. Singh, H.-J. Kwon, and J.-W. Suh. 2006. Novel function of cytokinin: A signaling molecule for promotion of antibiotic production in Streptomycetes. J. Microbiol. Biotechnol. 16: 896-900   과학기술학회마을
11 Hoyt, S. and G. H. Jones. 1999. relA is required for actinomycin production in Streptomyces antibioticus. J. Bacteriol. 181: 3824-3829
12 Jaishy, B. P., S. K. Lim, I. D. Yoo, and J. C. Yoo. 2006. Cloning and characterization of a gene cluster for the production of polyketide macrolide dihydrochalcomycin in Streptomyces sp. KCTC 0041BP. J. Microbiol. Biotechnol. 16: 764-770   과학기술학회마을
13 MacNeil, D. J. 1989. Characterization of a unique methylspecific restriction system in Streptomyces avermitilis. J. Bacteriol. 170: 5607-5612
14 Gentry, D. R. and M. Cashel. 1996. Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol. Microbiol. 19: 1373-1384   DOI   ScienceOn
15 Bystrykh, L. V., M. A. Fernandez-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related blue pigments by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238- 2244   DOI
16 Hobbs, G., C. M. Frazer, D. C. J. Garner, J. A. Cullum, and S. G. Oliver. 1989. Dispersed growth of Streptomyces in liquid culture. Appl. Microbiol. Biotechnol. 31: 272-277
17 Murray, K. D. and H. Bremer, 1996. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J. Mol. Biol. 259: 41-57   DOI   ScienceOn
18 Williams, R. P., J. A. Green, and D. A. Rappoport. 1956. Studies on pigmentation of Serratia marcescens. 1. Spectral and paper chromatographic properties of prodigiosin. J. Bacteriol. 71: 115-120
19 Hesketh, A., J. Sun, and M. Bibb. 2001. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol. Microbiol. 39: 136-144   DOI   ScienceOn
20 Jin, W., H. K. Kim, J. Y. Kim, S. G. Kang, S. H. Lee, and K. J. Lee. 2004. Cephamycin C production is regulated by relA and rsh genes in Streptomyces clavuligerus ATCC 27064. J. Biotechnol. 114: 81-87   DOI   ScienceOn
21 Keston, A. S. and B. Katchen. 1956. Incorporation of glycine-2-$C^{14}$ into homologous antibody by rabbit tissue slices. J. Immunol. 76: 253-258
22 Cashel, M., D. R. Gentry, V. J. Hernandez, and D. Viella. 1996. In Neidhardt, F. C. et al. (eds.). Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 1458- 1496. Washington, D.C. American Society for Microbiology
23 Metzger, S., E. Sarubbi, G. Glaser, and M. Cashel. 1989. Protein sequences encoded by the relA and the spoT genes of Escherichia coli are interrelated. J. Biol. Chem. 264: 9122- 9125
24 Strauch, E., E. Takano, H. A. Baylis, and M. J. Bibb. 1991. The stringent response in Streptomyces coelicolor A3(2). Mol. Microbiol. 5: 289-298   DOI   ScienceOn
25 Wendrich, T. M., C. L. Beckering, and M. A. Marahiel. 2000. Characterization of the relA/spoT gene from Bacillus stearothermophilus FEMS Microbiol. Lett. 190: 195-201   DOI
26 Chater, K. F. and M. J. Bibb. 1997. Regulation of bacterial antibiotic production, pp. 57-105. In Kleinkauf, H. and Dohren, H. V. (eds.), Biotechnology. Vol. 7: Products of Secondary Metabolism. VCH Press, Weinheim, Germany
27 Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, U.K
28 Ochi, K. 1987. A rel mutation abolishes the enzyme induction needed for actinomycin synthesis by Streptomyces antibioticus. Agric. Biol. Chem. 51: 829-835   DOI
29 Kang, S. G., W. Jin, M. J. Bibb, and K. J. Lee. 1998. Actinorhodin and undecylprodigiosin production in wild type and relA mutant strains of Streptomyces coelicolor A3(2) grown in continuous culture. FEMS Microbiol. Lett. 168: 221-226   DOI   ScienceOn
30 Ochi, K. 1986. Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J. Gen. Microbiol. 132: 2621-2631
31 Pospiech, A. and B. Neumann. 1995. A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet. 11: 213-218   DOI
32 Plummer, T. H. Jr., A. W. Phelan, and A. L. Tarentino. 1987. An Introduction to Practical Biochemistry, 3rd Edition. McGraw-Hill, London
33 Bascaran, V., L. Sanchez, C. Hardisson, and A. F. Brana. 1991. Stringent response and initiation of secondary metabolism in Streptomyces clavuligerus. J. Gen. Microbiol. 137: 1625- 1634   DOI   ScienceOn
34 Jones, G. H. and M. J. Bibb. 1996. Guanosine pentaphosphate synthetase from Streptomyces antibioticus is also a polynucleotide phosphorylase. J. Bacteriol. 178: 4281-4288   DOI
35 Ryu, Y. G., W. Jin, J. Y. Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomcyes clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
36 Haseltine, W. A. and R. Block. 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codonspecific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci. USA 70: 1564-1568