• Title/Summary/Keyword: Differential operation

Search Result 450, Processing Time 0.028 seconds

A Study on The Development and Function Test of Digital Transformer Protection Relay Using The Induced Voltage (유기전압비를 이용한 디지털형 변압기 보호계전기 개발 및 성능시험에 관한 연구)

  • Jung, Sung-Kyo;Lee, Jae-Kyung;Kim, Han-Do;Choi, Dae-Gil;Kang, Yong-Chul;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.216-218
    • /
    • 2001
  • The transformer role is very important in power system operation and control; also its price is very expensive. Therefore many kinds of the efforts for transformer protection have been executed. So for as, current differential relay(87) has been mainly used for transformer protection. But current differential relaying method has several troubles as followings. Differential current can be occurred by transformers inrush current between winding1 and winding2 of transformer when transformer is initially energized. Also harmonic restrained element used in current differential relaying method is one of the causes of relays mal-operation because recently harmonics in power system gradually increase by power switching devices(SVC, FACTS, DSC, etc). Therefore many kinds of effort have been executed to solve the trouble of current differential relay and one of them is method using ratio of increment of flux linkages(RIFL) of the primary and secondary windings. This paper introduces a novel protective relay for power transformers using RIFL of the primary and secondary windings. Novel protective relay successfully discriminates between transformer internal faults and normal operation conditions including inrush and this paper includes real time test results using RTDS(Real Time Digital Simulator) for novel protective relay. A novel protective relay was designed using the TMS320C32 digital signal processor and consisted of DSP module. A/D converter module, DI/DO module, MMI interface module and LCD display module and developed by Xelpower co., Ltd.

  • PDF

Development of Fully-Implantable Middle Ear Hearing Device with Differential Floating Mass Transducer : Current Status

  • Cho Jin-Ho;Park Il-Yong;Lee Sang-Heun
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.309-317
    • /
    • 2005
  • It is expected that fully-implantable middle-ear hearing devices (FIMEHDs) will soon be available with the advantages of complete concealment, easy surgical implantation, and low power operation to resolve the problems of semi-implantable middle-ear hearing devices (SIMEHDs) such as discomfort of wearing an external device and replacement of battery. Over the last 3 years, a Korean research team at Kyungpook National University has developed an FIMEHD called ACRHS-1 based on a differential floating mass transducer (DFMT). The main research focus was functional improvement, the establishment of easy surgical procedures for implantation, miniaturization, and a low-power operation. Accordingly, this paper reviews the overall system architecture, functions, and experimental results for ACRHS-1 and its related accessories, including a wireless battery charger and remote controller.

A Low-Spur CMOS PLL Using Differential Compensation Scheme

  • Yun, Seok-Ju;Kim, Kwi-Dong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.518-526
    • /
    • 2012
  • This paper proposes LC voltage-controlled oscillator (VCO) phase-locked loop (PLL) and ring-VCO PLL topologies with low-phase noise. Differential control loops are used for the PLL locking through a symmetrical transformer-resonator or bilaterally controlled varactor pair. A differential compensation mechanism suppresses out-band spurious tones. The prototypes of the proposed PLL are implemented in a CMOS 65-nm or 45-nm process. The measured results of the LC-VCO PLL show operation frequencies of 3.5 GHz to 5.6 GHz, a phase noise of -118 dBc/Hz at a 1 MHz offset, and a spur rejection of 66 dBc, while dissipating 3.2 mA at a 1 V supply. The ring-VCO PLL shows a phase noise of -95 dBc/Hz at a 1 MHz offset, operation frequencies of 1.2 GHz to 2.04 GHz, and a spur rejection of 59 dBc, while dissipating 5.4 mA at a 1.1 V supply.

Unknown input observer design via fast Walsh transform and Walsh function's differential (고속월쉬변환과 월쉬함수 미분연산식에 의한 미지입력 관측기 설계)

  • Kim, Jin-Tae;Ahn, Pius;Kim, Min-Hyung;Lee, Myung-Kyu;Kim, Jae-Il;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2611-2613
    • /
    • 2000
  • This paper deals with a novel approach to unknown inputs observer(UIO) design for linear time-invariant dynamical systems using a fast Walsh transform and Walsh function's differential operation. Generally, UIO has a derivation of system outputs which is not available from the measurement directly. And it is an obstacle to estimate the unknown inputs properly when unexpected measurement noises are presented. Therefore, this paper propose an algebraic approach to eliminate such problems by using a Walsh function's differential operation.

  • PDF

Optimal Economical Running Patterns Based on Fuzzy Model (철도차량을 위한 퍼지모델기반 최적 경제운전 패턴 개발)

  • Lee, Tae-Hyung;Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.594-600
    • /
    • 2006
  • The optimization has been performed to search an economical running pattern in the view point of trip time and energy consumption. Fuzzy control model has been applied to build the meta-model. To identify the structure and its parameters of a fuzzy model, fuzzy c-means clustering method and differential evolutionary scheme ate utilized, respectively. As a result, two meta-models for trip time and energy consumption are constructed. The optimization to search an economical running pattern is achieved by differential evolutionary scheme. The result shows that the proposed methodology is very efficient and conveniently applicable to the operation of railway system.

Improvement of the Differential Current Relaying Method for Protecting the Transmission Line Equipped with UPFC (UPFC를 포함한 송전성에서의 전류차동 보호 방식의 개선)

  • Lim, Jung-Uk;Kwon, Young-Jin;Runolfsson, Thordur
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.40-47
    • /
    • 2005
  • The objective of this paper is to analyze power system dynamics influenced by UPFC(Unified Power flow Controller) operation and to develop a refined DCRM(Differential Current Relaying Method) to protect the transmission line with UPFC effectively. The implementation of control strategies for UPFC introduces new power system dynamic problems that must be considered while applying the conventional DCRM. In this paper, impact of UPFC operation on the DCRM has been reviewed and a refined DCRM has been proposed to detect faults properly in spite of UPFC operation. The porposed method is verified by simulation on the line-faulted system with UPFC.

Design of a Timing Estimator Algorithm for 2.45GHz LR-WPAM Receiver (2.45GHz LR-WPAN 수신기를 위한 Timing Estimator 알고리즘의 설계)

  • Kang Shin-Woo;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.282-290
    • /
    • 2006
  • In this paper, we propose an enhanced Timing Estimator algorithm for 2.45GHz LR-WPAN receiver. Because an expensive and highly efficient oscillator can't be used for low-cost implementation, a Timing Estimator algorithm having stable operation in the channel environment with center frequency tolerance of 80 ppm is required. To enhance the robustness to frequency offset and the stability of receiver performance, multiple delay differential filter is adopted. By utilizing the characteristic that the correlation result between the output signal of Multiple delay differential filter and reference signal is restricted on the In-phase part of the correlator output, a coherent detection scheme instead of the typical noncoherent one is adopted for Timing Estimator. The application of the coherent detection scheme is suitable for LR-WPAN receiver aimed at low-cost, low-power, and low-complexity, since it can remove performance degradation due to squaring loss of I/Q squaring operation and decrease implementation complexity. Computer simulation results show that the proposed algorithm achieved performance improvement compared with the differential detection-based noncoherent scheme by 2dB in average.

A Modified Current Differential Relay for Transformer Protection (변압기 보호용 수정 전류차동 계전방식)

  • 강용철;김은수;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

Graphical Presentation on Operation Principle of Protective Relay According to Winding Type and Vector Group in Transformer (전력용 변압기에서 권선방식과 벡터그룹에 따른 보호계전기 동작원리의 그래픽 표현)

  • Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1410-1412
    • /
    • 1999
  • Protective relay for transformer operates in general by comparing with the differential current and the restraint current. These kinds of currents are changed on magnitude and phasor during the fault according to winding type and vector group. This paper presents the differential and restraint currents and operational principle of differential protective relay for two-winding and three-winding transformer with graphical model. It is developed using MATLAB for an educational purpose on engineer related in power system and protection in university and power utility including large factory.

  • PDF

Transformer Differential Relay by Using Neural-Fuzzy System

  • Kim, Byung Whan;Masatoshi, Nakamura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.2-157
    • /
    • 2001
  • This paper describes the synergism of Artificial Neural Network and Fuzzy Logic based approach to improve the reliability of transformer differential protection, the conventional transformer differential protection commonly used a harmonic restraint principle to prevent a tripping from inrush current during initial transformer´s energization but such a principle can not performs the best optimization on tripping time. Furthermore, in some cases there may be false operation such as during CT saturation, high DC offset or harmonic containing in the line. Therefore an artificial neural network and fuzzy logic has been proposed to improve reliability of the transformer protection relay. By using EMTP-ATP the power transformer is modeled, all currents flowing ...

  • PDF