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Abstract: It is expected that fully-implantable middle-ear hearing devices (FIMEHDs) will soon be available with the
advantages of complete concealment, easy surgical implantation, and low power operation to resolve the problems of
semi-implantable middle-ear hearing devices (SIMEHDs) such as discomfort of wearing an external device and replacement
of battery. Over the last 3 years, a Korean research team at Kyungpook National University has developed an FIMEHD called
ACRHS-1 based on a differential floating mass transducer (DFMT). The main research focus was functional improvement, the
establishment of easy surgical procedures for implantation, miniaturization, and a low-power operation. Accordingly, this paper
reviews the overall system architecture, functions, and experimental results for ACRHS-1 and its related accessories, including

a wireless battery charger and remote controller.
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INTRODUCTION

In the case of conventional acoustic hearing aids
used to cover severe sensorineural hearing loss,
there are still unavoidable problems, such as sound
distortion, howling, and unwanted acoustic feedback
when the sound signals are delivered with a high
gain amplification. Plus, the discomfort associated
with wearing conventional hearing aids still needs to
be resolved.

As the implantable middle-ear hearing devices
(IMEHDs) directly drive the ossicular chain by
changing the acoustic sound into a mechanical
vibration, there is no feedback of the acoustic
sound output from the hearing aid. Therefore,
according to several reports, IMEHDs are able to
produce a high quality of sound, especially for
hearing-impaired people who are dissatisfied with
conventional acoustic hearing aids[1-7].
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Semi-implantable middle-ear hearing devices
(SIMEHDs) have already been developed in several
countries, for example, the Vibrant Medel's sound
bridge[8-12) and the Rion device[l3] developed by
Ehime University. Yet, the common limitations of
these two SIMEHDs are the discomfort associated
with wearing the external module and poor cosinetic
appearance. In addition, SIMEHDs cannot be used
in a swimming pool or bath. Thus, to overcome
these  limitations, fully-implantable  middle-ear
hearing devices (FIMEHDs) have now been
developed, for example, the Envoy system from St.
Croix Medical[14], which is currently undergoing
clinical tests for FDA approval. However, since the
malleus in the ossicular chain must be disconnected
to prevent feedback from the incus vibration to the
tympanic membrane, any air conductional residual
hearing of the hearing-impaired person is lost, plus
the ossicle chain is permanently destroyed. In
contrast, ACRHS-1, an FIMEHD developed at
Kyungpook National University, is based on a
differential floating mass transducer (DFMT) that
does not involve destroying the ossicular chain, and
a small skin incision is sufficient to replace the
battery. Furthermore, the DFMT of ACRHS-1 is less
influenced by environmental electromagnetic
fields[15-18].

Accordingly, this paper introduces the main
design and implementation characteristics of
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ACRHS-1, including the frequency characteristics of
the vibrating transducer and implantable
microphone, functional improvement of the audio
processing module, and size miniaturization and
low-power operation of the implanted device. The
DFMT and implantable microphone are designed to
have high efficiency and sensitivity using a finite
element analysis (FEA). Experimental results using
the ossicular chain of a cadaver and guinea pig are
presented to verify that the ACRHS-1 can provide a
suitable performance for individuals with a moderate
to severe sensorineural hearing loss.

CONSTRUCTION OF ACRHS-1

As shown Fig. 1, ACRHS-1 is composed of five main
parts: the vibration transducer, implantable
microphone, audio signal processor with adjustable
filter characteristics, control signal transmitting and
receiving module for communication with a remote
controller and battery charger, and recharging circuit
for the internal battery of ACRHS-1.
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Fig. 1. Concept of ACRHS-1, fully-implantable middle-ear
hearing device (FIMEHD), developed by Kyungpook National
University.
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Design and Analysis of DFMT

A DFMT with similar frequency characteristics to
those of a normal middle ear was designed and
implemented. In consideration of the cavity space in

J. Biomed. Eng. Res.

the middle ear, the DFMT was minimized to the
appropriate size for implantation. To optimize the
DFMT  characteristics, which  are  practically
determined by the electromagnetically forced
vibration, an FEA simulation was carried out. The
simulation results were evaluated as regards their
suitability for the transducer in the ACRHS-1
system and used as the specifications for the
optimal design. The most distinct advantage of a
DFMT is its structural design that is unaffected by
environmental magnetic fields, unlike a conventional
FMT. Fig. 2 (a) shows the components of the
designed DFMT, including two polyimide
membranes, titanium covers, a driving coil, and two
magnets. The two magnets are giued with the same
pole facing each other inside the coil. Thus, since
the magnets face each other with the same polarity,
forces induced by environmental magnetic fields are
completely canceled. Also, the efficiency of
generating the force by supplying a signal current to
the solenoid coil is higher than that of an FMT.
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Fig. 2. (a) Components of DFMT and (b) simulation
results for vibration characteristics of designed DFMT.
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The actuating force of the DFMT driving parts
can be defined using Lorentz's force theory. To
design the DFMT with the maximum actuating force
and appropriate size for implantation, the size of the
electromagnetic actuating part was optimized by an
FEA simulation. As a result, the air gap between
the magnet and the coil, the optimal magnet length
considering the thickness of the polyimide
membrane and titanium cover, the coil lengths, and
coil thickness were all determined to produce the
maximal force[19].

The momentum equation for the free-body
diagram of the DFMT was obtained using Newton's
second law.

The vibration displacements of the DFMT, in the
force vibration mode, were defined wusing the

following equation, and the amplitudes of the
displacements computed using a  theoretical
formula[19].

Fo(ky — 2
x] olky —mye”) sin w¢

[y ~ myw > Yy + by —myw? )~ k3]

1)

where m; is the outer case mass of the DFMT, with
the exception of the magnet mass, my is the magnet
mass, k; is the stiffness of the lead wire connected
to the DFMT, k; is the stiffness of the polyimide
membrane, X; is the vibration displacement of the
DFMT, Fo is the constant electromagnetic force, and
o is the circular frequency. In order for the DFMT
to have similar frequency characteristics to a normal
raiddle ear, an optimized FEA model of the DFMT
was designed and simulated. The frequency
characteristics of the stapes were flat in a frequency
range lower than 1.5 k. However, at more than 1.5
kfz, the responses gradually attenuated. Therefore,
the resonant frequency of the DFMT was designed
to be close to the primary pole, which rapidly
changes the characteristics of the stapes. As shown
in Fig. 2 (b), the designed DFMT exhibited similar
vibration characteristics to those of a normal middle
ear.

Experimental Results for DFMT

The designed membrane was fabricated using
micro electro mechanical system (MEMS) processing.
The developed DFMT had a diameter of 1.8 mn and
length of 2 mm, as shown in Figs. 3 (a) and (b). In
Fig. 3 (¢}, the measurement results show that the
vibration displacement of the DFMT was about 200
nm between 0.1 and 1.5 ki when a current of 1 nj
ms was applied to the coil, confirming that the
DFMT had similar frequency characteristics to stape
vibrations in a normal ear.
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Fig. 3. (a) Developed DFMT, (b) fabricated membrane,
and (c) measured vibrating characteristics.

IMPLANTABLE MICROPHONE

The microphone in ACRHS-1 consists of a small
electret condenser microphone (ECM), titanium case,
and vibrating membrane made of very thin stainless
steel. A high sensitivity is the most important factor
for an implantable microphone, while reliability is
essential for a steady long-term operation in-vivo[20].
Therefore, a 10 m-thick flexible vibrating membrane
with a wider area than the ECM was used to collect
more sound energy and increase the sensitivity of
the microphone. Sound vibrations from a speaker
are transmitted to the vibrating membrane of the
microphone through the skin, where they change
the fluid pressure of the air layer, then the changed
air pressure is transmitted to the vibrating
membrane of the ECM. Figs. 4 (a) and (b) show the
microphone structure and a cross-sectional diagram
of the microphone, respectively.

When a sound pressure of 70 dB was
transmitted to the vibrating membrane of the
microphone, a loading pressure ranging from 0.1 kiz
to 9 Kz was simulated on the electric microphone
membrane.
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The sensitivity of the microphone was then
calculated by an algebraic formula using the
simulated sound pressure, and Fig. 4 (c) shows the
calculated results[21].

The implantable microphone case was made of
titanium with a polymer coating and hermetic
sealing process for safety purposes, and the
vibrating membrane was fabricated using 10 m
SUS316L stainless steel. After assembling the
fabricated components and miniaturized ECM, the
resulting microphone was 6.2 mn in diameter and 3
mnn high, as shown in Fig 5 (a). The frequency
characteristics of the fabricated microphone were
measured using an experimental method that
excluded any effects due to environmental noise, the
characteristics of the speaker, and the shielding
chamber. Fig. 5 (b) shows the measurement system
used to determine the microphone characteristics,
while Fig. 5 (c) presents the experiment results for
the fabricated microphone when wusing pig skins
with different thicknesses. When using 6 mm-thick
pig skin, the implantable microphone had a
bandwidth of 5 kHz, which is adequate for hearing
aids.
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Fig. 4. (a) Microphone components, (b) cross-sectional
diagram, and (c) simulation results as regards its
sensitivity.
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Top and bottom view of fabricated
implantable microphone, (b) measurement system used
for tests, and (b) experimental results in air and with pig
skin.

SIGNAL PROCESSING AND
CONTROL MODULE

The audio signal processing module needs to be
designed to compensate for the hearing loss of a
hearing impaired person. As such, the signal
processing module amplifies the electrical input
signal produced by the implantable microphone
based on a calculated gain-frequency curve using
the prescriptive method, one-half gain rule, or Byrne
method etc.[22]. The output stage of the signal
processing module then needs to be designed as an
efficient current amplifier. The audio signal
processing module of ACRHS-1 was designed as an
analog type. The low-power microprocessor within
the implanted device controls the activation of the
device power, volume up and down, and the
adjustment of the frequency characteristics. To
transmit the control signal from outside the body to
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the implanted device, the RF communication method
is used.

The audio signal processing module was designed
using an analog hearing aid hybrid IC (Gennum,
3000 series) for use in ACRHS-1. The hybrid IC
offers optimal performance with a class-D amplifier
and the advantage of low power consumption. As
the features of IC can be controlled by variable
resistors, a 32-tap digitally programmable
potentiometer was adopted to facilitate the volume
control, low frequency gain control (LFC), and high
frequency gain control (HFC). The audio signal of
the output stage is transmitted to the transducer
implanted in the ossicular chain. Thus, for low
power consumption in the output stage, a class-D
amplifier and efficient transformer are used. The
range of the volume control, LFC, and HFC are
shown in Fig. 6.
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Fig. 6. Range of (a) volume control, (b) low frequency
control, and (c) high frequency control.

The power control, volume control, LFC, and
HFC of the audio signal processing module are
controlled by a wireless communication method, IR
communication, or RF communication, from outside
the body. The control signal is transmitted to the IR
or RF receiving module and decoded by the
microprocessor in the implanted device. Through the
bidirectional communication between the remote
controller and the implanted device, the implanted
device can accept the control signal and correctly
operate the specified functions, as well as
transmitting outward internal information on the
status of the battery or filter setting. A block
diagram of the analog signal processing module and
control module is shown in Fig. 7 (a). The
implemented ACRHS-1 consists of an implantable
microphone, audio signal processing and control
module, and transducer as in Fig. 7 (b). The size of
the implanted device is 30 (L) mm, 25 (W) mn, and 6
(H) mm. The case and cover are made of titanium
and ceramic material, respectively, for
biocompatibility. The surface of the implanted device
is also coated with a biocompatible material before
being implanted in the body. The specifications of
the overall device are shown in Table 1.
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Fig. 7. (a) Block diagram of analog signal processing
module and control module, and (b) implemented
ACRHS-1 based on DFMT. ‘
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Table 1. Specifications of ACRHS-1.

in active 0.8 mAms~ 1.2 nAms
Current consumption

Stand-by 70 ﬂArms
Rechargeable battery capacity 75 mAh

Overall size (mn) 30 (L) x 25 (W) x 6 (H)

Recharging cycle (15 hours / day) 5 days

Case material Titanium

Cover material Zirconia ceramic

WIRELESS CHARGER

ACRHS-1 uses a lithium-ion rechargeable battery.
However, the general charge method using contact
with a metal plate cannot be utilized owing to the
skin barrier. Thus, to solve this problem, a wireless
charger was developed for ACRHS-1 based on
electromagnetic induction. In each coil, the LC
resonance is used to enhance the efficiency[23-25).
Two kinds of chargers are designed in the form of a
pillow to allow charging while sleeping.

The pillow-type charger was designed wusing
electromagnetic induction. To produce an AC to
drive the two primary coils, a 60 V DC is switched
using a power MOSFET. Therefore, the charging
voltage during the charging process is unaffected by
any head movement, and two primary coils are
used. A schematic of the pillow-type charger using
two primary coils is given in Fig. 8 (a), and the
developed wireless chargers are implemented as in
Fig. 8 (b). Using these devices, charging experiments
were carried out while varying the distance between
the primary and secondary coils. The results of the
charging experiment are shown in Fig. 9, where the
pillow-type charger was able to sufficiently charge
the battery within a distance of 40 mm.
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Fig. 8. (a) Schematic of pillow-type charger and (b)
implemented charger.
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Fig. 9. Input voltage for charging IC when varying
distance between two coils in pillow-type charger.

REMOTE CONTROLLER

An RF-type remote control unit was developed for
the FIMEHD to eliminate the disadvantages of an
IR-type control unit, such as position matching with
the IR receiver and the power consumption by the
receiver.

Plus, the implemented remote controller can
recharge the battery, transmit a control signal to
ACRHS-1, and communicate bidirectionally based on
the design of the coupled coils, external and
internal control parts, and data protocol using an
on-off keying modulation[26-28].

Through inductive coupling between the external
and implanted coil, the control signal and power
can both be transferred to ACRHS-1. Also, the two
coils are used to transfer the confirming data back
from ACRHS-1 to the remote controller as a
two-way communication. Fig. 10 (a) illustrates how
the inductively coupled controller operates. The
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remote controller for ACRHS-1 has a LCD to display
the mode of the control signal and low-power
microprocessor. The controller includes an on/off
function, controls 32 levels of volume and
frequency, and can recharge the internal battery in
ACRHS-1. A 9V alkaline battery is used for the
power source. The developed remote controller is
shown in Fig. 10 (b).
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Fig 10. (a) Data communication process and (b)

implemented remote controller.

EXPERIMENTAL RESULTS

Experiment Using Cadaver

The performance of the transducer was measured
based on testing the vibrating DFMT attached to the
ossicle of a cadaver. Fig. 11 (a) shows the
attachment of the proposed DFMT to the long
process of the incus using a mechanical clip made
of 80m SUS316L. In Fig. 11 (b), the vibrating
displacements of the incus head and stapes head
are displayed when a sinusoidal current of 1 mAms
was applied to the DFMT. As shown by the results,
the proposed DFMT was able to apply an adequate
vibrating force to the ossicular chain of the cadaver

for sound delivery to the cochlea on an equivalent
level of 100 dB SPL.
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Fig 11. (a) DFMT attached to long process of incus and
(b) results of vibrating displacement when supplying 1
mArms.

Experiment Using Guinea Pig

The sound delivery produced by ACRHS-1 was
also tested in an animal experiment. Fig. 12 (a)
shows the DFMT attached to the umbo of a guinea
pig, and Fig. 12 (b) displays the results of the
auditory brainstem response (ABR) when inputting
different levels of sound pressure to the ACRHS-1
implantable microphone. As demonstrated by the
results, the ACRHS-1 DFMT was able to produce
the enough vibration on the ossicular chain to
deliver an audio signal to the cochlea. Plus, all the

functions, including the volume control, filter
programming, recharging, and implantable
microphone worked properly. Therefore, it is

expected that the ACRHS-1 will soon progress to
animal and clinical tests after safety approval from
the Korea Food and Drug Administration (KFDA).
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Fig 12. (a) Experiment attaching transducer to umbo of
guinea pig and (b) results of ABR test.

CONCLUSION

Fully implantable middle-ear hearing devices
(FIMEHDs) that can directly drive the ossicular
chain wusing a vibrating transducer have been
developed to overcome the problems of conventional
hearing aids, such as sound distortion, howling
effects, and discomfort during wearing. One such
example is ACRHS-1 based on a differential floating
mass transducer (DFMT) that has been developed by
Kyungpook National University. Therefore, this paper
provided a review of the overall system architecture,
functions, and experimental results for ACRHS-1
and its related accessories, such as a wireless
battery charger and remote controller.

The experimental results using the ossicular
chain of a cadaver and guinea pig demonstrated
that ACRHS-1 using a DFMT can provide a suitable
performance for individuals with a moderate to
severe sensorineural hearing loss. Therefore, it is
expected that ACRHS-1 will soon progress to animal
and clinical tests based on safety approval from the
Korea Food and Drug Administration (KFDA).
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