• Title/Summary/Keyword: Differential amplifier

Search Result 235, Processing Time 0.038 seconds

Design of a Phase Splitter(2.4[GHz]) using Differential Amplifier (자동증폭기를 이용한 위상분상기(Phase Splitter) 설계)

  • Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.14-17
    • /
    • 2008
  • This paper describes the simulation of a phase splitter for the design of Chireix Outphasing power amplifier. Phase splitter separate the input signal with $0[^{\circ}]$ into the signal with $+90[^{\circ}]$ and $-90[^{\circ}]$ Chireix Outphasing power amplifier get a linearized output from the signal amplifying and combining the separated signal with the phase of $+90[^{\circ}]$ and $-90[^{\circ}]$ of the phase splitter. phase splitter is the core device when designing Chireix Outphasing power amplifier. It is very difficult to design phase splitter with the difference of $90[^{\circ}]$. This phase splitter is used to design the difference of $180[^{\circ}]((90[^{\circ}]+{\alpha}),\;-(90[^{\circ}])+{\alpha}))$ using simulation tool and a differential amplifier.

A low-Gain Error Amplifier for Common-Mode Feedback Circuit (Common Mode Feedback 회로를 위한 저 증폭도 에러증폭기)

  • 정근정;노정진
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.714-723
    • /
    • 2003
  • An effective technique to increase the signal swing and reduce noise is to use fully-differential -circuits. However, design of a common-mode feedback (CMFB) circuit that stabilizes the common-mode output level is essential. In this paper, a general description is given to fully-differential amplifiers with their CMFB loops, then a new error amplifier that is just composed of transistors and stabilizes the DC output level is proposed. We designed a simple and efficient bias circuit that allows the stability and maximum input swing. Simulation result shows the enhanced phase margin and increased differential-mode input swing with a proposed error amplifier.

Amplifier Circuits with Differential Characteristics (미분특성을 갖는 증폭회로)

  • 이영근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.4
    • /
    • pp.33-37
    • /
    • 1972
  • Amplifier circuits with differential characteristics, that is, amplifier circuits the voltage gain of which are proportional to the complex frequency are described. It is shown that the characteristics of the circuit predicted on the basis of the nullator-norator model of the transistor coincides with the result of the exact analysis of the circuit, and experimental result coincides with the theory.

  • PDF

Satellite Battery Cell Voltage Monitor System Using a Conventional Differential Amplifier (종래의 차동증폭기를 사용한 인공위성 배터리 셀 전압 감시 시스템)

  • Koo, Ja-Chun;Choi, Jae-Dong;Choi, Seong-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.113-118
    • /
    • 2005
  • This paper shows a satellite battery cell voltage monitor system to make differential voltage measurements when one or both measurement points are beyond voltage range allowed by a conventional differential amplifier. This system is particularly useful for monitoring the individual cell voltage of series-connected cells that constitute a rechargeable satellite battery in which some cell voltages must be measured in the presence of high common mode voltage.

The Design of High Precision Pre-amplifier for EEG Signal Measurement (뇌파신호 측정을 위한 고정밀 전치 증폭기의 설계)

  • 유선국;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.301-308
    • /
    • 1995
  • A high-precision pre-amplifier is designed for general use in EEG measurement system. It consists of signal generator, signal amplifier with a impedance converter, shield driver, body driver, differential amplifier, and isolation amplifier. The combination of minimum use of inaccurate passive components and the appropriate matching of each monolithic amplifiers results in good noise behavior, low leakage current, high CMRR, high input impedance, and high IMRR. The performance of EEG pre-amplifier has been verified by showing the typical EEG pattevn of a nomad person through the clinical experiments.

  • PDF

Design of High-Gain OP AMP Input Stage Using GaAs MESFETs (갈륨비소 MESFET를 이용한 고이득 연산 증폭기의 입력단 설계)

  • 김학선;김은노;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-79
    • /
    • 1992
  • In the high speed analog system satellite communication system, video signal processing and optical fiber interface circuits, GaAs high gain operational amplifier is advantageous due to obtain a high gain because of its low transconductance and other drawbacks, such as low frequency dispersion and process variation. Therefore in this paper, a circuit techniques for improving the voltage gain for GaAs MESFET amplifier is presented. Also, various types of existing current mirror and current mirror proposed are compared.To obtain the high differential gain, bootstrap gain enhancement technique is used and common mode feedback is employed in differential amplifier.The simulation results show that gain is higher than that of basic amplifier about 18.6dB, and stability and frequency performance of differential amplifier are much improved.

  • PDF

A 1.5V 70dB 100MHz CMOS Class-AB Complementary Operational Amplifier (1.5V 70dB 100MHz CMOS Class-AB 상보형 연산증폭기의 설계)

  • 박광민
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.743-749
    • /
    • 2002
  • A 1.5V 70㏈ 100MHz CMOS class-AB complementary operational amplifier is presented. For obtaining the high gain and the high unity gain frequency, the input stage of the amplifier is designed with rail-to-rail complementary differential pairs which are symmetrically parallel-connected with the NMOS and the PMOS differential input pairs, and the output stage is designed to the rail-to-rail class-AB output stage including the elementary shunt stage technique. With this design technique for output stage, the load dependence of the overall open loop gain is improved and the push-pull class-AB current control can be implemented in a simple way. The designed operational amplifier operates perfectly on the complementary mode with 180$^{\circ}$ phase conversion for 1.5V supply voltage, and shows the push-pull class-AB operation. In addition, the amplifier shows the DC open loop gain of 70.4 ㏈ and the unity gain frequency of 102 MHz for $C_{L=10㎊∥}$ $R_{L=1㏁}$ Parallel loads. When the resistive load $R_{L}$ is varied from 1 ㏁ to 1 ㏀, the DC open loop gain of the amplifier decreases by only 2.2 ㏈.a$, the DC open loop gain of the amplifier decreases by only 2.2 dB.

A New PMU (parametric measurement unit) Design with Differential Difference Amplifier (차동 차이 증폭기를 이용한 새로운 파라메터 측정기 (PMU) 설계)

  • An, Kyung-Chan;Kang, Hee-Jin;Park, Chang-Bum;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • This paper describes a new PMU(parametric measurement unit) design technique for automatic test equipment(ATE). Only one DDA(differential difference amplifier) is used to force the test signals to DUT(device under test), while conventional design uses two or more amplifiers to force test signals. Since the proposed technique does not need extra amplifiers in feedback path, the proposed PMU inherently guarantees stable operation. Moreover, to measure the response signals from DUT, proposed technique also adopted only one DDA amplifier as an IA(instrument amplifier), while conventional IA uses 3 amplifiers and several resistors. The DDA adopted two rail-to-rail differential input stages to handle full-range differential signals. Gain enhancement technique is used in folded-cascode type DDA to get open loop gain of 100 dB. Proposed PMU design enables accurate and stable operation with smaller hardware and lower power consumption. This PMU is implemented with 0.18 um CMOS process and supply voltage is 1.8 V. Input ranges for each force mode are 0.25~1.55 V at voltage force and 0.9~0.935 V at current force mode.

Integrated Rail-to-Rail Low-Voltage Low-Power Enhanced DC-Gain Fully Differential Operational Transconductance Amplifier

  • Ferri, Giuseppe;Stornelli, Vincenzo;Celeste, Angelo
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.785-793
    • /
    • 2007
  • In this paper, we present an integrated rail-to-rail fully differential operational transconductance amplifier (OTA) working at low-supply voltages (1.5 V) with reduced power consumption and showing high DC gain. An embedded adaptive biasing circuit makes it possible to obtain low stand-by power dissipation (lower than 0.17 mW in the rail-to-rail version), while the high DC gain (over 78 dB) is ensured by positive feedback. The circuit, fabricated in a standard CMOS integrated technology (AMS 0.35 ${\mu}m$), presents a 37 V/${\mu}s$ slew-rate for a capacitive load of 15 pF. Experimental results and high values of two quality factors, or figures of merit, show the validity of the proposed OTA, when compared with other OTA configurations.

  • PDF

1.5Gb/s Low Power LVDS I/O with Sense Amplifier (Sense amplifier를 이용한 1.5Gb/s 저전력 LVDS I/O 설계)

  • 변영용;이승학;김성하;김동규;김삼동;황인석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.979-982
    • /
    • 2003
  • Due to the differential transmission technique and low voltage swing, LVDS has been widely used for high speed transmission with low power consumption. This paper presents the design and implementation of interface circuits for 1.5Gb/s operation in 0.35um CMOS technology. The interface circuit ate fully compatible with the low-voltage differential signaling(LVDS) standard. The LVDS proposed in this paper utilizes a sense amplifiers instead of the conventional differential pre-amplifier, which provides a 1.5Gb/s transmission speed with further reduced driver output voltage. Furthermore, the reduced driver output voltage results in reducing the power consumption.

  • PDF