• Title/Summary/Keyword: Differential amplifier

Search Result 235, Processing Time 0.063 seconds

Comparison between a differential and a non-differential amplifier system with two electrodes in bio-potential measurement (생체 전위 측정에서 2-전극 차동 증폭 시스템과 2-전극 비차동 증폭 시스템의 비교)

  • Kang, Dae-Hun;Lee, Chung-Keun;Lee, Sang-Joon;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1977-1978
    • /
    • 2008
  • In this paper, we compare performance of common-mode rejection between a differential and a non-differential amplifier system with two electrodes. A differential amplifier system is constant for common-mode rejection ratio(CMRR) on the frequency domain. But a non-differential amplifier's CMRR is determined by $Z_{FB}/Z_e$ ($Z_{FB}$ ; feedback impedance, $Z_e$; electrode impedance). There is trade-off between a non-differential amplifier's CMRR and its differential input impedance. And a non-differential amplifier system has some advantages for a bio-potential measurement with two electrodes because a designer can control the impedance between the body and system's common.

  • PDF

The Gain Enhancement of 1.8V CMOS Self-bias High-speed Differential Amplifier by the Parallel Connection Method (병렬연결법에 의한 1.8V CMOS Self-bias 고속 차동증폭기의 이득 개선)

  • Bang, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1888-1892
    • /
    • 2008
  • In this paper, a new parallel CMOS self-bias differential amplifier is designed to use in high-speed analog signal processing circuits. The designed parallel CMOS self-bias differential amplifier is developed by using internal biasing circuits and the complement gain stages which are parallel connected. And also, the parallel architecture of the designed parallel CMOS self-bias differential amplifier can improve the gain and gain-bandwidth product of the typical CMOS self-bias differential amplifier. With 1.8V $0.8{\mu}m$ CMOS process parameter, the results of HSPICE show that the designed parallel CMOS self-bias differential amplifier has a dc gain and a gain-bandwidth product of 64 dB and 49 MHz respectively.

Design of High-Speed Comparators for High-Speed Automatic Test Equipment

  • Yoon, Byunghun;Lim, Shin-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.291-296
    • /
    • 2015
  • This paper describes the design of a high-speed comparator for high-speed automatic test equipment (ATE). The normal comparator block, which compares the detected signal from the device under test (DUT) to the reference signal from an internal digital-to-analog converter (DAC), is composed of a rail-to-rail first pre-amplifier, a hysteresis amplifier, and a third pre-amplifier and latch for high-speed operation. The proposed continuous comparator handles high-frequency signals up to 800MHz and a wide range of input signals (0~5V). Also, to compare the differences of both common signals and differential signals between two DUTs, the proposed differential mode comparator exploits one differential difference amplifier (DDA) as a pre-amplifier in the comparator, while a conventional differential comparator uses three op-amps as a pre-amplifier. The chip was implemented with $0.18{\mu}m$ Bipolar CMOS DEMOS (BCDMOS) technology, can compare signal differences of 5mV, and operates in a frequency range up to 800MHz. The chip area is $0.514mm^2$.

A fully-differential bipolar current-controlled current amplifier(CCCA) (완전-차동형 바이폴라 전류-제어 전류 증폭기(CCCA))

  • 손창훈;임동빈;차형우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.289-292
    • /
    • 2001
  • A Novel fully-differential bipolar current-controlled current amplifier(CCCA) for electrically tunable circuit design at current-mode signal processing were designed. The CCCA was consisted of fully-differential subtracter and fully-differential current gain amplifier. The simulation result shows that the CCCA has current input impedance of 0.5 Ω and a good linearity. The CCCA has 3-dB cutoff frequency of 20 MHz for the range over bias current 100$mutextrm{A}$ to 20 ㎃. The power dissipation is 3 mW.

  • PDF

Design of High Gain Differential Amplifier Using GaAs MESFET's (갈륨비소 MESFET를 이용한 고이득 차동 증폭기 설계)

  • 최병하;김학선;김은로;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.8
    • /
    • pp.867-880
    • /
    • 1992
  • In this paper, a circuit design techniques for Improving the voltage gain of the GaAs MESFET single amplifier is presented. Also, various types of existing current mirror and proposed current mirror of new configuration are compared. To obtain the high differential mode gain and low common mode gain, bootstrap gain enhancement technique Is used and common mode feedback Is employed In the design of differential amplifier. The simulation results show that designed differential amplifier has differential gain of 57.66dB, unity gain frequency of 23.25GHz. Also, differential amplifier using common mode feedback with alternative negative current mirror has CMRR of 83.S8dB, stew rate of 3500 V /\ulcorners.

  • PDF

Differential 2.4-GHz CMOS Power Amplifier Using an Asymmetric Differential Inductor to Improve Linearity (비대칭 차동 인덕터를 이용한 2.4-GHz 선형 CMOS 전력 증폭기)

  • Jang, Seongjin;Lee, Changhyun;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.726-732
    • /
    • 2019
  • In this study, we proposed an asymmetric differential inductor to improve the linearity of differential power amplifiers. Considering the phase error between differential signals of the differential amplifier, the location of the center tap of the differential inductor was modified to minimize the error. As a result, the center tap was positioned asymmetrically inside the differential inductor. With the asymmetric differential inductor, the AM-to-AM and AM-to-PM distortions of the amplifier were suppressed. To confirm the feasibility of the inductor, we designed a 2.4 GHz differential CMOS PA for IEEE 802.11n WLAN applications with a 64-quadrature amplitude modulation (QAM), 9.6 dB peak-to-average power ratio (PAPR), and a bandwidth of 20 MHz. The designed power amplifier was fabricated using the 180-nm RF CMOS process. The measured maximum linear output power was 17 dBm, whereas EVM was 5%.

A High-Linearity Low-Noise Reconfiguration-Based Programmable Gain Amplifier

  • Han, Seok-Kyun;Nguyen, Huy-Hieu;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.318-330
    • /
    • 2013
  • This paper presents a high-linearity low-noise small-size programmable gain amplifier (PGA) based on a new low-noise low-distortion differential amplifier and a proposed reconfiguration technique. The proposed differential amplifier combines an inverter-based differential pair with an adaptive biasing circuit to reduce noise and distortion. The reconfiguration technique saves the chip size by half by utilizing the same differential pair for the input transconductance and load-stage, interchangeably. Fabricated in $0.18-{\mu}m$ CMOS, the proposed PGA shows a dB-linear control range of 21dB in 16 steps from -11 dB to 10 dB with a gain error of less than ${\pm}0.33$ dB, an IIP3 of 7.4~14.5 dBm, a P1dB of -7~1.2 dBm, a noise figure of 13dB, and a 3-dB bandwidth of 270MHz at the maximum gain, respectively. The PGA occupies a chip area of $0.04mm^2$ and consumes only 1.3 mA from the 1.8 V supply.

New Fully-Differential CMOS Second-Generation Current Conveyer

  • Mahmoud, Soliman A.
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.495-501
    • /
    • 2006
  • This paper presents a new CMOS fully-differential second-generation current conveyor (FDCCII). The proposed FDCCII is based on a fully-differential difference transconductor as an input stage and two class AB output stages. Besides the proposed FDCCII circuit operating at a supply voltage of ${\pm}1.5\;V$, it has a total standby current of $380\;{\mu}A$. The applications of the FDCCII to realize a variable gain amplifier, fully-differential integrator, and fully-differential second-order bandpass filter are given. The proposed FDCII and its applications are simulated using CMOS $0.35\;{\mu}m$ technology.

  • PDF

An analytical consideration of the MOS type field-effect transistor differential amplifier (MOS형 전계효과 트랜지스터 차동증폭기에 관한 소고)

  • 정만영
    • 전기의세계
    • /
    • v.14 no.6
    • /
    • pp.1-7
    • /
    • 1965
  • This paper provides the analysis of the differential amplifier using the insulated gate, metala-oxide-semiconductor type field-effect-transistor(MOS FET), for its active element and the power drift of the amplifer. From these analytical considerations some design standardsn were found for the MOS FET differential amplifier available for the measurement of the very small current (pico-ampare range). A differential amplifier was designed and built in the view of above considerations. Its equivalent input gate voltages of the thermal drift and the power drift were 0.57mV/.deg. C in the range 25.deg. C-60.deg. C and 8.8mV/V in the range of 20% drift of its orginal value, respectively.

  • PDF

The design of Fully Differential CMOS Operational Amplifier (Fully Differential CMOS 연산 증폭기 설계)

  • Ahn, In-Soo;Song, Seok-Ho;Choi, Tae-Sup;Yim, Tae-Soo;Sakong, Sug-Chin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.85-96
    • /
    • 2000
  • It is necessary that fully differential operational amplifier circuit should drive an external load in the VLSI design such as SCF(Switched Capacitor Filter), D/A Converter, A/D Converter, Telecommunication Circuit and etc. The conventional CMOS operational amplifier circuit has many problems according to CMOS technique. Firstly, Capacity of large loads are not able to operate well. The problem can be solve to use class AB stages. But large loads are operate a difficult, because an element of existing CMOS has a quadratic functional relation with input and output voltage versus output current. Secondly, Whole circuit of dynamic range decrease, because a range of input and output voltages go down according as increasing of intergration rate drop supply voltage. The problem can be improved by employing fully differential operational amplifier using differential output stage with wide output swing. In this paper, we proposed new current mirror has large output impedance and good current matching with input an output current and compared with characteristics for operational amplifier using cascoded current mirror. To obtain large output swing and low power consumption we suggest a fully differential operational amplifier. The circuit employs an output stage composed new current mirror and two amplifier stage. The proposed circuit is layout and circuit of capability is inspected through simulation program(SPICE3f).

  • PDF