New Fully-Differential CMOS Second-Generation Current Conveyer

Soliman A. Mahmoud

Abstract

This paper presents a new CMOS fully-differential second-generation current conveyor (FDCCII). The proposed FDCCII is based on a fully-differential difference transconductor as an input stage and two class AB output stages. Besides the proposed FDCCII circuit operating at a supply voltage of $\pm 1.5 \mathrm{~V}$, it has a total standby current of $380 \mu \mathrm{~A}$. The applications of the FDCCII to realize a variable gain amplifier, fullydifferential integrator, and fully-differential second-order bandpass filter are given. The proposed FDCII and its applications are simulated using CMOS $0.35 \mu \mathrm{~m}$ technology.

Keywords: Current conveyor, fully differential current conveyor, band pass filter, variable gain amplifier.

[^0]
I. Introduction

An analog circuit design using the current mode approach has recently gained considerable attention. This stems from its inherent advantages such as wide bandwidth, high slew rate, low power consumption, and simple circuitry [1]. The second generation current conveyor (CCII) is one of the most versatile current mode building bocks. Since its introduction [2], it has been used in a wide range of applications, and several circuit realizations have been proposed for its implementation [3]-[8]. The CCII is a single-ended device; however, most modern high-performance analog integrated circuits incorporate fullydifferential signal paths. This is because fully-differential circuit configurations have been widely used in high-frequency analog signal applications such as switched capacitor filters [9] and mute-standard wireless receivers [10]. As compared to their single-ended counterparts, they have higher rejection capabilities to clock-feed-through, and to charge injection errors and power supply noises. They also have a larger output dynamic range, higher design flexibility, and reduced harmonic distortion. Moreover, most modern systems employ both analog and digital parts on the same chip. A fully-differential architecture of the analog part becomes more essential as it provides immunity to digital noise.
In this paper, a new fully-differential CMOS secondgeneration current conveyor (FDCCII) is proposed. The proposed CMOS realization of the FDCCII is based on a new fully-differential difference transconductor as an input stage and two class AB output stages. The FDCCII has the advantages of the single-ended CCII along with the advantages of fully-differential signal processing. Like the single ended CCII [1], the FDCCII has many useful applications. The FDCCII is basically a fully-differential device as shown in

Fig. 1. The symbol of the FDCCII.

Fig.1. The Y_{1} and Y_{2} terminals are high-impedance terminals, while X_{1} and X_{2} terminals are low-impedance ones. The differential input voltage $\mathrm{V}_{\mathrm{Y} 12}$ applied across Y_{1} and Y_{2} terminals is conveyed to a differential voltage $\mathrm{V}_{\mathrm{X} 12}$, that is, $\left(\mathrm{V}_{\mathrm{X} 12}=\mathrm{V}_{\mathrm{Y} 12}\right)$. The input currents applied to the X_{1} and X_{2} terminals are conveyed to the Z_{1} and Z_{2} terminals, that is, $\left(\mathrm{I}_{21}=\mathrm{I}_{\mathrm{x} 1}\right.$ and $\left.\mathrm{I}_{22}=\mathrm{I}_{\mathrm{x} 2}\right)$. The Z_{1} and Z_{2} terminals are highimpedance nodes suitable for current outputs.
This paper is organized as follows. In section II, the realization of the FDCCII is presented. In section III, the applications of the FDCCII in realizing a fully-differential integrator and a fully-differential second-order bandpass filter with independent gain-bandwidth and high-quality factor are given. PSpice simulations of the proposed FDCCII and its applications using CMOS $0.35 \mu \mathrm{~m}$ technology are also given.

II. CMOS Realization of the FDCCII

The overall CMOS circuit of the FDCCII is shown in Fig. 2. The proposed FDCCII consists of a differential difference transconductor formed from transistors M_{1} to M_{16}, a current mirror formed from M_{17} to M_{21} and M_{37} to M_{39}, two class $A B$ output stages $\left(\mathrm{M}_{25}\right.$ to $\left.\mathrm{M}_{30}\right)$ and $\left(\mathrm{M}_{31}\right.$ to $\left.\mathrm{M}_{36}\right)$, and the biasing of the output stages $\left(\mathrm{M}_{22}\right.$ to $\left.\mathrm{M}_{24}\right)$. All transistors are assumed to be operating at saturation.
Transistors M_{1} to M_{8} are assumed to be matched transistors with transconductance parameter K, and their currents are linearized by using the four biasing circuits formed from M_{9} to M_{16}. First, expressions for the biasing voltages V_{a}, V_{b}, V_{c}, and V_{d} in terms of $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{4}, respectively, are obtained. Consider the biasing circuit formed from M_{11} and M_{15}, the current flowing through M_{11} is given by:

$$
\begin{equation*}
I_{11}=\frac{K_{11}}{2}\left(V_{Y 2}-V_{a}-V_{T}\right)^{2} \tag{1}
\end{equation*}
$$

where $\left\{K_{11}=\mu_{n} C_{o x}(W / L)_{11}\right\}$ is the transconductance parameter of transistor M_{11}, μ_{n} is the electron mobility, $C_{o x}$ is the oxide
capacitance per unit area, and $(W / L)_{11}$ is the aspect ratio. And the same current flowing through M_{15} is given by

$$
\begin{equation*}
I_{15}=\frac{K_{15}}{2}\left(V_{B}-V_{S S}-V_{T}\right)^{2} \tag{2}
\end{equation*}
$$

where V_{B} is the control voltage, taking $K_{11}=K_{15}$; hence, from (1) and (2), the biasing voltage V_{a} is given by

$$
\begin{equation*}
V_{a}=V_{Y 2}-V_{B}+V_{S S} . \tag{3}
\end{equation*}
$$

Similar expressions for the biasing voltages V_{b}, V_{c}, and V_{d} can be obtained and are given by

$$
\begin{align*}
& V_{b}=V_{Y 1}-V_{B}+V_{S S}, \tag{4}\\
& V_{c}=V_{X 2}-V_{B}+V_{S S}, \text { and } \tag{5}\\
& V_{d}=V_{X 1}-V_{B}+V_{S S} . \tag{6}
\end{align*}
$$

Therefore, the currents through M_{1} to M_{8} can be obtained. The currents through M_{1} to M_{4} can be written as

$$
\begin{align*}
& I_{1}=\frac{K}{2}\left(V_{Y 2}-V_{S S}-V_{T}\right)^{2}, \tag{7}\\
& I_{2}=\frac{K}{2}\left(V_{Y 1}-V_{S S}-V_{T}\right)^{2}, \tag{8}\\
& I_{3}=\frac{K}{2}\left(V_{X 2}-V_{S S}-V_{T}\right)^{2}, \quad \text { and } \tag{9}\\
& I_{4}=\frac{K}{2}\left(V_{X 1}-V_{S S}-V_{T}\right)^{2}, \tag{10}
\end{align*}
$$

The currents of transistors M_{5} to M_{8} are given by

$$
\begin{align*}
& I_{5}=\frac{K}{2}\left(V_{Y 1}-V_{B}-V_{T}\right)^{2}, \tag{11}\\
& I_{6}=\frac{K}{2}\left(V_{Y 2}-V_{B}-V_{T}\right)^{2}, \tag{12}\\
& I_{7}=\frac{K}{2}\left(V_{X 2}-V_{B}-V_{T}\right)^{2}, \text { and } \tag{13}\\
& I_{8}=\frac{K}{2}\left(V_{X 1}-V_{B}-V_{T}\right)^{2}, \tag{14}
\end{align*}
$$

The output current of input stage transconductor $I_{\text {out }}$ is defined as

$$
\begin{equation*}
I_{o u t}=I_{f}-I_{e} \tag{15}
\end{equation*}
$$

Fig. 2. The CMOS circuit of the FDCCII.

Table 1. Transistor aspect ratios for the circuit shown in Fig. 2.

Transistors	$\mathrm{W}(\mu \mathrm{m})$	$\mathrm{L}(\mu \mathrm{m})$
$\mathrm{M}_{1}-\mathrm{M}_{8}$	0.7	5.6
$\mathrm{M}_{8}-\mathrm{M}_{16}$	0.7	0.7
$\mathrm{M}_{17}-\mathrm{M}_{19}, \mathrm{M}_{37}$	14	0.7
$\mathrm{M}_{20}, \mathrm{M}_{38}$	17.5	0.7
$\mathrm{M}_{21}, \mathrm{M}_{39}$	35	0.7
$\mathrm{M}_{22}, \mathrm{M}_{26}, \mathrm{M}_{29}, \mathrm{M}_{33}, \mathrm{M}_{35}$	70	0.7
$\mathrm{M}_{23}, \mathrm{M}_{28}, \mathrm{M}_{30}, \mathrm{M}_{34}, \mathrm{M}_{36}$	35	0.7
M_{24}	14	0.7
$\mathrm{M}_{25}, \mathrm{M}_{27}, \mathrm{M}_{31}, \mathrm{M}_{32}$	1.4	0.7

From Fig. 2,

$$
\begin{equation*}
I_{\text {out }}=\left(I_{2}+I_{3}+I_{6}+I_{8}\right)-\left(I_{1}+I_{4}+I_{5}+I_{7}\right) . \tag{16}
\end{equation*}
$$

By substituting (7) to (14) for I_{1} to I_{8} in (16), the transconductor output current is given by

$$
\begin{equation*}
I_{\text {out }}=G_{m}\left[\left(V_{Y 1}-V_{Y 2}\right)-\left(V_{X 1}-V_{X 2}\right)\right] \text {, } \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{m}=K\left(V_{B}-V_{S S}\right) . \tag{18}
\end{equation*}
$$

By the current mirror action of transistors $\mathrm{M}_{17}, \mathrm{M}_{18}$, and M_{19}, the current I_{f} is forced to be equal to I_{e} (that is, $I_{\text {out }}=I_{f}-I_{e}=0$). Therefore from (17),

$$
\begin{equation*}
V_{Y 1}-V_{Y 2}=V_{X 1}-V_{X 2} . \tag{19}
\end{equation*}
$$

In order to minimize the voltage offset between the X and Y terminals, V_{e} must be small and very close to V_{f}, which is approximately equal to zero for low values of the X-terminal currents.
For proper operation of the current mirror, the bias voltage $V_{\text {cmirror }}$ must be adjusted as follows to make V_{e} equal to zero:

$$
\begin{equation*}
V_{\text {cmirror }}=\frac{\sqrt{K_{19}}\left(V_{D D}-\left|V_{T_{p}}\right|\right)+\sqrt{K_{e f f}}\left(V_{T_{n}}+\left|V_{T_{p}}\right|\right)}{\sqrt{K_{19}}+\sqrt{K_{e f f}}} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{e f f}=\frac{\sqrt{K_{20} K_{21}}}{\sqrt{K_{20}}+\sqrt{K_{21}}} \tag{21}
\end{equation*}
$$

The expression of $V_{\text {cmirror }}$ can be obtained simply: transistors M_{20} and M_{21} work as a composite transistor with effective transconductance parameter $K_{\text {eff }}$ given in (21). Therefore, the current through $\left(\mathrm{M}_{20}, \mathrm{M}_{21}\right)$ is given by

$$
\begin{equation*}
I_{20}=I_{21}=\frac{K_{e f f}}{2}\left(V_{\text {cmirror }}-V_{e}-V_{T_{n}}-\left|V_{T_{p}}\right|\right)^{2} \tag{22}
\end{equation*}
$$

Transistor M_{19} acts as a current source, and this current is given by

$$
\begin{equation*}
I_{19}=\frac{K_{19}}{2}\left(V_{D D}-V_{\text {cmirror }}-\left|V_{T_{p}}\right|\right)^{2} . \tag{23}
\end{equation*}
$$

But the current flowing through M_{19} is the same as that of $\left(\mathrm{M}_{20}, \mathrm{M}_{21}\right)$. Therefore, the bias voltage $V_{\text {cmirror }}$ to make V_{e} equal to zero is given in (20).
To maintain a good current drive capability with low-output impedance outputs, class AB output stages are used. Transistors $\left(\mathrm{M}_{26}, \mathrm{M}_{28}\right)$ and $\left(\mathrm{M}_{33}, \mathrm{M}_{34}\right)$ form the push-pull output stage transistors. The level shift circuits formed by $\left(\mathrm{M}_{25}\right.$, M_{27}) and ($\mathrm{M}_{31}, \mathrm{M}_{32}$) are used to realize controlled floating voltage sources that control the standby current through the

Fig. 3. (a) FDCCII as a current buffer, (b) variations of the output current I_{Z} and its transfer gain with respect to the input current I_{X} for the FDCCII shown in Fig.2(a), and (c) the differential offset voltage across the X_{1} and X_{2} terminals along its derivative for the FDCCII shown in Fig.2(a).
output stage transistors. The standby current is adjusted by the biasing circuit formed of $\mathrm{M}_{22}, \mathrm{M}_{23}$, and M_{24}. The standby power consumption of the output stages for the dual power supply is given by

$$
\begin{equation*}
P_{S B}=2 V_{D D}\left(3 I_{S B}+K_{25}\left(V_{D D}-V_{T n}+V_{T_{p}}\right)^{2}\right) . \tag{24}
\end{equation*}
$$

The last term in the above equation is the current through the level shift transistors $\left(\mathrm{M}_{25}, \mathrm{M}_{27}\right)$ and $\left(\mathrm{M}_{31}, \mathrm{M}_{32}\right)$. This current can be kept small by choosing a small aspect ratio for $\left(\mathrm{M}_{25}, \mathrm{M}_{27}\right)$ and $\left(\mathrm{M}_{31}, \mathrm{M}_{32}\right)$. The class AB output stage enables the circuit to derive a heavy resistive and capacitive load with low standby power consumption and no slewing. It is worth mentioning that smaller Miller compensation capacitors can be connected between the gate and drain of transistors M_{26} and M_{33} to ensure good transient response under all load conditions.
The input currents applied to the X_{1} and X_{2} terminals are conveyed to the Z_{1} and Z_{2} terminals by using the transistors $\left(\mathrm{M}_{35}, \mathrm{M}_{36}\right)$ and $\left(\mathrm{M}_{29}, \mathrm{M}_{30}\right)$, respectively.
The performance of the proposed FDCCII circuit was verified by performing Pspice simulations with supply voltages $\pm 1.5 \mathrm{~V}$ and using $0.35 \mu \mathrm{~m}$ CMOS technology parameters.
Figure 3(b) shows the floating output current across the Z_{1} and Z_{2} terminals when a floating input current I_{X} is connected across the X_{1} and X_{2} terminals and scanned from $-500 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$ while the differential voltage across Y_{1} and Y_{2} is set

Fig. 4. (a) The FDCCII based amplifier of gain $=2$ and (b) the voltage swings $\mathrm{V}_{\mathrm{X} 12}$ and $\mathrm{V}_{\mathrm{Z} 12}$ of the FDCII based amplifier shown in Fig. 4(a).

Fig. 5. (a) The FDCCII based variable gain amplifier, (b) the DC transfer characteristic of the FDCCII based variable gain amplifier for different values of R_{2}. (c) the frequency response of the FDDII-based variable gain amplifier, and (d) the input and output refereed noise spectral densities.
to zero as shown in Fig. 3(a). It has been found that the magnitude of I_{Z} follows that of I_{X} with a maximum output current of 5 mA and a gain error of 0.03% for a 2 mA output current. Figure 3(c) shows the variations of the offset voltage across the X_{1} and X_{2} terminals versus the variation in the input current applied across X_{1} and $X_{2}\left(\mathrm{I}_{\mathrm{X}}\right)$ when $\mathrm{V}_{\mathrm{Y} 12}$ is equal to zero. The differential X input resistance $\left(\mathrm{R}_{\mathrm{X} 12}\right)$ is less than 15Ω. The offset voltage is less than 7 mV at $\mathrm{I}_{\mathrm{z}}=500 \mu \mathrm{~A}$. Figure 4(b) shows the voltage swings $\mathrm{V}_{\mathrm{X} 12}$ and $\mathrm{V}_{\mathrm{Z} 12}$ when the FDCCII is used to realize a voltage amplifier with a gain of two as shown in Fig. 4(a). The DC linearity error is found to be less than 0.01% for a 0.75 V differential input, and the maximum differential output voltage is 2.4 V . The power supply rejection ratio from the positive supply to the output is 98 dB , and from the negative supply to the output is 90 dB . The differential DC characteristics of the FDCCII-based variable gain amplifier (VGA) shown in Fig. 5(a), with gains of 1, 2, 4, 8, and 16, are shown in Fig. 5(b). Also, the frequency response of the FDCCII-based variable gain amplifier is shown in Fig. 5(c). It is clear from Fig. 5(c) that the VGA based on the FDCFOA experiences no loss in bandwidth (which is approximately equal to 26 MHz) when the gain is
increased. The input and output voltage noise spectral density of the FDCCII-based unity gain amplifier is shown in Fig. 5(d).

III. Applications

The proposed FDCCII can be used to implement a fullydifferential or fully-balanced architecture of any CCII-based circuit. Two design examples are presented in this section to demonstrate the use of the proposed FDCCII.

A. Fully-Differential Integrator

The fully-differential integrator is a basic building block in realizing continuous time filters [11]-[12]. Figure 6 shows the FDCCII-based fully-differential integrator. The output voltage of the integrator is taken across the buffered Z_{1} and Z_{2} terminals and is given by

$$
\begin{equation*}
V_{\text {out }}=\frac{1}{S C R} V_{\text {in }} . \tag{25}
\end{equation*}
$$

PSpice simulation results for the FDCCII-based fully-
differential integrator are shown in Fig. 7 with a square wave input of a 1 V peak-to-peak amplitude and a frequency of 100 kHz , where $\mathrm{R}=10 \mathrm{k} \Omega$ and $\mathrm{C}=250 \mathrm{pF}$.

B. FDCFOA-Based Bandpass Filter

The FDCCII is used to implement a fully-differential version of the Sallen-Key bandpass filter. The filter shown in Fig. 8 represents a filter circuit that realizes a second-order fullydifferential bandpass filter based on a single FDCCII. By direct analysis, the following transfer function is obtained as

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-\frac{R_{3}}{R_{1} R_{2} C_{1}} S}{S^{2}+\frac{S}{R_{2}}\left[\frac{\left(C_{1}+C_{2}\right)}{C_{1} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}} \tag{26}
\end{equation*}
$$

From the above equation, for equal C design, ω_{o}, Q, and gain H of the filter are given by

$$
\begin{align*}
\omega_{o} & =\frac{1}{\sqrt{R_{1} R_{2}} C} \tag{27}\\
Q & =\frac{1}{2} \sqrt{\frac{R_{2}}{R_{1}}}, \text { and } \tag{28}\\
|H| & =\frac{1}{2} \frac{R_{3}}{R_{1}} \tag{29}
\end{align*}
$$

Therefore, it is possible to achieve a high Q by proper selection of R_{2} and R_{1}. The center frequency can be tuned without disturbing Q by simultaneously programming C_{1} and C_{2} using capacitor arrays [13]. One more advantage of this filter is that its gain H can be programmed without disturbing the center frequency or the quality factor by changing R_{3}.
Figure 9 shows the simulated frequency response of the bandpass filter shown in Fig. 8. The center frequency is 455 KHz , the quality factor is tuned from 5 to 20 , and its gain is tuned from 15 dB to 40 dB .

IV. Conclusion

A CMOS FDCCII has been introduced, analyzed, and simulated. The FDCCII is based on a fully-differential difference transconductor circuit as an input stage and two class AB output stages. The circuit is suitable for wide-range, lowvoltage, and low-power applications. The proposed FDCCII circuit is characterized by the ability to achieve high gain with low loss of bandwidth. Application examples in designing a VGA, fully differential integrator, and second-order bandpass filter are also provided.

Fig. 6. The FDCCII-based fully-differential integrator.

Fig. 7. Output of the integrator along with the square wave input.

Fig. 8. Fully-differential bandpass filter based on the proposed FDCCII.

Fig. 9. Magnitude response of the second-order fully-differential BPF based on the proposed FDCCII.

References

[1] A. M. Soliman, 'Novel Generation Method of Current Mode Wein Type Oscillators using Current Conveyors," Int. J. of Electronics, vol. 85, 1998, pp. 737-747.
[2] A. Sedra and K. Smith, "A Second-Generation Current Conveyor and its Applications," IEEE Trans. Circuits Syst., vol. CT-17, 1970, pp. 132-134.
[3] B. Wilson, "High Performance Current Conveyor Implementation," Electron. Lett., vol. 20, 1984, pp. 990-991.
[4] M. Cheng and C. Toumazou, " 3 V MOS Current Conveyor Cell for VLSI Technology," Electron. Lett., vol. 29, 1993, pp. 317-318.
[5] H. Elwan and A. Soliman, "A Novel CMOS Current Conveyor Realization with an Electronically Tunable Current-Mode Filter Suitable for VLSI," IEEE Trans. Circuits Syst. II, vol. 43, 1996, pp. 663-670.
[6] S. Mahmoud and A. Soliman, "Low Voltage Rail to Rail CMOS Current Feedback Operational Amplifier and its Applications for Analog VLSI," Analog Integrated Circuits and Signal Proc., vol. 25, 2000, pp. 47-57.
[7] H. Elwan and A. Soliman, "Low Voltage Low Power CMOS Current Conveyors," IEEE Trans. Circuits Syst. I, vol. 44, 1997, pp. 828-835.
[8] S. Mahmoud and I. Awad, "Fully Differential CMOS Current Feedback Operational Amplifier," Analog Integrated Circuits and Signal Proc., vol. 43, pp. 61-69, 2005.
[9] T. Choi, R. Kaneshiro, R. Bodersen, P. Gray, W. Jett, and M. Wilcox, "High-Frequency CMOS Switched-Capacitor Filters for Communications Application," IEEE J. Solid-state Circuits, vol. SC-18, 1983, pp. 652-663
[10] J. Rudell, J.-J. Ou, T. Cho, G. Chien, F. Brianti, J. Weldon, and P. Gray, "A 1.9 GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications," IEEE J. SolidState Circuits, vol. 32, 1997, pp. 2071-2088.
[11] A. Soliman, "Current Reedback Operational Amplifier Based Oscillators," Analog Integrated Circuits and Signal Proc., vol. 23, 2000, pp. 45-55.
[12] A. Soliman, "Applications of the Current Feedback Operational Amplifiers," Analog Integrated Circuits and Signal Proc., vol. 11, 1996, pp. 256-302.
[13] S. Mahmoud, "Digitally Controlled Balanced Output Transconductor and Application to Variable Gain Amplifier and GM-C Filter on Field Programmable Analog Array," Journal of Circuits, Systems and Computer, vol. 14, no. 4, 2005, pp. 667-684.

Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the BSc degree with honors in 1994, the MSc degree in 1996, and the PhD degree in 1999, all from the Electronics and Communications Department, Cairo University, Egypt. He is currently an Associate Professor at the Electrical Engineering Department, Fayoum University, Egypt. He has published more than 50 papers. In 2005, he was decorated with the Science Prize in Advanced Engineering Technology from the Academy of Scientific Research and Technology. Starting from September 2006, He will join the Electrical and Electronic Department, German University in Egypt, as an Associate professor. His research and teaching interests are in circuit theory, fully-integrated analog filters, high-frequency transconductance amplifiers, low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed analog/digital programmable analog blocks.

[^0]: Manuscript received Dec. 29, 2005; revised Apr. 07, 2006
 Soliman A. Mahmoud (phone: + 202507 1867, email: amahmoud@frcu.eun.eg) is with Electrical Engineering Department, Fayoum University, Fayoum, Egypt.

