• Title/Summary/Keyword: Differential Cryptanalysis

Search Result 89, Processing Time 0.026 seconds

Research on the Security Level of µ2 against Impossible Differential cryptanalysis

  • Zhang, Kai;Lai, Xuejia;Guan, Jie;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.972-985
    • /
    • 2022
  • In the year 2020, a new lightweight block cipher µ2 is proposed. It has both good software and hardware performance, and it is especially suitable for constrained resource environment. However, the security evaluation on µ2 against impossible differential cryptanalysis seems missing from the specification. To fill this gap, an impossible differential cryptanalysis on µ2 is proposed. In this paper, firstly, some cryptographic properties on µ2 are proposed. Then several longest 7-round impossible differential distinguishers are constructed. Finally, an impossible differential cryptanalysis on µ2 reduced to 10 rounds is proposed based on the constructed distinguishers. The time complexity for the attack is about 269.63 10-round µ2 encryptions, the data complexity is O(248), and the memory complexity is 263.57 Bytes. The reported result indicates that µ2 reduced to 10 rounds can't resist against impossible differential cryptanalysis.

Multidimensional Differential-Linear Cryptanalysis of ARIA Block Cipher

  • Yi, Wentan;Ren, Jiongjiong;Chen, Shaozhen
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.108-115
    • /
    • 2017
  • ARIA is a 128-bit block cipher that has been selected as a Korean encryption standard. Similar to AES, it is robust against differential cryptanalysis and linear cryptanalysis. In this study, we analyze the security of ARIA against differential-linear cryptanalysis. We present five rounds of differential-linear distinguishers for ARIA, which can distinguish five rounds of ARIA from random permutations using only 284.8 chosen plaintexts. Moreover, we develop differential-linear attacks based on six rounds of ARIA-128 and seven rounds of ARIA-256. This is the first multidimensional differential-linear cryptanalysis of ARIA and it has lower data complexity than all previous results. This is a preliminary study and further research may obtain better results in the future.

Provable Security for New Block Cipher Structures against Differential Cryptanalysis and Linear Cryptanalysis (새로운 블록 암호 구조에 대한 차분/선형 공격의 안전성 증명)

  • Kim, Jong-Sung;Jeong, Ki-Tae;Lee, Sang-Jin;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.121-125
    • /
    • 2007
  • Differential cryptanalysis and linear cryptanalysis are the most powerful approaches known for attacking many block ciphers and used to evaluating the security of many block ciphers. So designers have designed secure block ciphers against these cryptanalyses. In this paper, we present new three block cipher structures. And for given r, we prove that differential(linear) probabilities for r-round blockcipher structures are upper bounded by $p^2(q^2),\;2p^2(2q^2)$ if the maximum differential(linear) probability is p(q) and the round function is a bijective function.

Performance Improvement of Power attack with Truncated Differential Cryptanalysis (부정차분을 이용한 전력분석공격 향상)

  • Kang, Tae-Sun;Kim, Hee-Seok;Kim, Tae-Hyun;Kim, Jong-Sung;Hong, Seok-Hie
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.155-158
    • /
    • 2008
  • In 1989, Kocher et al. introduced Differential Power Attack on block ciphers. This attack allows to extract secret key used in cryptographic computations even if these are executed inside tamper-resistant devices such as smart card. Since 1989, many papers were published to improve resistance of DPA. At FSE 2003 and 2004, Akkar and Goubin presented several masking methods to protect iterated block ciphers such as DES against Differential Power Attack. The idea is to randomize the first few and last few rounds(3 $\sim$ 4 round) of the cipher with independent random masks at each round and thereby disabling power attacks on subsequent inner rounds. This paper show how to combine truncated differential cryptanalysis applied to the first few rounds of the cipher with power attacks to extract the secret key from intermediate unmasked values.

  • PDF

Differential Cryptanalysis of DES-Like Block Cipher HEA (블록 암호 알고리즘 HEA에 대한 차분분석)

  • 현진수;송정환;강형석
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.4
    • /
    • pp.107-112
    • /
    • 2000
  • In this paper, we study a security of HEA(Hangul Encryption Algorithm) against differential cryptanalysis. HEA, which is 1,024bits input/output and 56bits key size, has the same structure as DES(Data Encyption Standard) only for Korean characters to be produced in ciphertexts. An encryption algorithm should be developed to meet certain critria such as input/ouput dependencies, correlation, avalanche effects, etc. However HEA uses the same S-Boxes as DES does and just expands the plaintext/ciphertext sizes . We analysize HEA with a differential cryptanalysis and present two results. The number of rounds of HEA has not been determined in a concrete basis of cryptanalysis and we show a chosen plintext attack of 10 round reduced HEA with a diffe- rential cryptanalysis characteristic.

Deep Learning Assisted Differential Cryptanalysis for the Lightweight Cipher SIMON

  • Tian, Wenqiang;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.600-616
    • /
    • 2021
  • SIMON and SPECK are two families of lightweight block ciphers that have excellent performance on hardware and software platforms. At CRYPTO 2019, Gohr first introduces the differential cryptanalysis based deep learning on round-reduced SPECK32/64, and finally reduces the remaining security of 11-round SPECK32/64 to roughly 38 bits. In this paper, we are committed to evaluating the safety of SIMON cipher under the neural differential cryptanalysis. We firstly prove theoretically that SIMON is a non-Markov cipher, which means that the results based on conventional differential cryptanalysis may be inaccurate. Then we train a residual neural network to get the 7-, 8-, 9-round neural distinguishers for SIMON32/64. To prove the effectiveness for our distinguishers, we perform the distinguishing attack and key-recovery attack against 15-round SIMON32/64. The results show that the real ciphertexts can be distinguished from random ciphertexts with a probability close to 1 only by 28.7 chosen-plaintext pairs. For the key-recovery attack, the correct key was recovered with a success rate of 23%, and the data complexity and computation complexity are as low as 28 and 220.1 respectively. All the results are better than the existing literature. Furthermore, we briefly discussed the effect of different residual network structures on the training results of neural distinguishers. It is hoped that our findings will provide some reference for future research.

The Linearity of algebraic Inversion and a Modification of Knudsen-Nyberg Cipher

  • Lee, Chang-Hyi;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 1998
  • K. Nyberg and L.R. Knudsen showed a prototype of a DES-like cipher$^{[1]}$ which has a provable security against differential cryptanalysis. But in the last year, at FSE'97 T. Jakobsen ane L.R.Knudsen broked it by using higher order differential attack and interpolation attack$^{[2]}$ . Furthermore the cipher was just a theoretically proposed one to demonstrate how to construct a cipher which is procably secure against differential cryptanalysis$^{[3]}$ and it was suspected to have a large complexity for its implementation.Inthis paper the two improved results for the dfficidnt hardware and software implementation.

An Encryption Algorithm Based on DES or Composition Hangul Syllables (DES에 기반한 조합형 한글 암호 알고리즘)

  • 박근수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • In this paper we present a Hangul Encryption Algorithm (HEA) which encrypts composition Hangul syllables into composition Hangul syllables using the non-linear structure of Hangul. Since ciphertexts generated by HEA are displayable characters HEA can be used in applications such as Privacy Enhanced mail (PEM) where ciphertexts should be displayable characters. HEA is based on DES and it can be shown that HEA is as safe as DES against the exhaustive key search differential cryptanalysis and linear cryptanalysis. HEA also has randomness of phonemes of ciphertexts and satisfies plaintext-ciphetext avalanche effect and key-ciphertext avalanche effect.

A Fast Algorithm for evaluating the Security of Substitution and Permutation Networks against Differential attack and Linear attack (SPN구조 블록 암호의 차분 공격 및 선형 공격에 대한 안전성을 측정하는 고속 알고리즘)

  • 박상우;지성택;박춘식;성수학
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 2001
  • In this paper, we examine the method for evaluating the security of SPN structures against differential cryptanalysis and linear cryptanalysis. We present an example of SPN structures in which there is a considerable difference between the differential probabilities and the characteristic probabilities. Then we 7pose an algorithm for estimating the maximum differential probabilities and the maximum linear hull probabilities of SPN structures and an useful method for accelerating the proposed algorithm. By using this method, we obain the maximum differential probabilities and the maximum linear probabilities of round function F of block cipher E2.

A Design and Analysis of the Block Cipher Circle-g Using the Modified Feistel Structure (변형된 Feistel 구조를 이용한 Circle-g의 설계와 분석)

  • 임웅택;전문석
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.3
    • /
    • pp.405-414
    • /
    • 2004
  • In this paper, we designed a 128-bits block cipher, Circle-g, which has 18-rounds modified Feistel structure and analyzed its secureness by the differential cryptanalysis and linear cryptanalysis. We could have full diffusion effect from the two rounds of the Circle-g. Because of the strong diffusion effect of the F-function of the algorithm, we could get a 9-rounds DC characteristic with probability 2^{-144} and a 12-rounds LC characteristic with probability 2^{-144}. For the Circle-g with 128-bit key, there is no shortcut attack, which is more efficient than the exhaustive key search, for more than 12 rounds of the algorithm.

  • PDF