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ARIA is a 128-bit block cipher that has been selected as 
a Korean encryption standard. Similar to AES, it is robust 
against differential cryptanalysis and linear cryptanalysis. 
In this study, we analyze the security of ARIA against 
differential-linear cryptanalysis. We present five rounds  
of differential-linear distinguishers for ARIA, which   
can distinguish five rounds of ARIA from random 
permutations using only 284.8 chosen plaintexts. 
Moreover, we develop differential-linear attacks based on 
six rounds of ARIA-128 and seven rounds of ARIA-256. 
This is the first multidimensional differential-linear 
cryptanalysis of ARIA and it has lower data complexity 
than all previous results. This is a preliminary study and 
further research may obtain better results in the future. 
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I. Introduction 

ARIA [1] is a block cipher designed by the Korean 
cryptographers Kwon and others in ICISC 2003. The upgraded 
version 1.0 of ARIA [2] was selected as a Korean standard 
block cipher by the Ministry of Commerce, Industry, and 
Energy [3] in 2004. ARIA has also been adopted by several 
standard protocols such as IETF (RFC 5794 [4]), SSL/TLS 
(RFC 6209 [5]) and PKCS #11 [6]. In Korea, ARIA has been 
used widely, especially in government-to-public services. Thus, 
studies of the security of ARIA are important in various areas 
of cryptanalysis and it is necessary to constantly reevaluate its 
security using various cryptanalytic techniques. 

The design of ARIA is provably resistant against differential 
and linear attacks, but many other cryptanalysis methods have 
been developed to attack ARIA, such as integral attacks [7], [8], 
boomerang attacks [9], meet-in-the-middle attacks [10]–[12], 
impossible differential attacks [13]–[15], zero-correlation linear 
attacks [16], and biclique attacks [17]. Li and others [7] 
presented integral attacks based on six-round ARIA-128 and 
seven-round ARIA-256. Fleischmann and others [9] reported 
boomerang attacks based on six rounds of ARIA-128 and 
seven rounds of ARIA-256 using all the plaintexts. Wu and 
others [13] presented a six-round impossible differential attack 
against ARIA, which was improved with lower attack 
complexities by Li and others [14]. Du and Chen [15] 
demonstrated an impossible differential attack on seven-round 
ARIA-256 with one extended round. Yi and others [16] 
reported some four-round zero-correlation linear 
approximations of ARIA and presented zero-correlation linear  
attacks on six rounds of ARIA-128 and seven rounds of ARIA-
256. Chen and Xu [17] presented biclique attacks on full-round 
ARIA-256 with about 2255.2 encryptions. Tang and others [10] 
employed a meet-in-the-middle attack to break seven rounds  
of ARIA-192 and eight rounds of ARIA-256, which 
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Table 1. Comparison of attacks on ARIA. 

Attack type Rounds Date Time Memory Reference 

Integral 6 2127.2 CPs 2124.4 Enc 2124.4 Byte [7] 

Integral 7 2100.6 CPs 2225.8 Enc N/A [7] 

Impossible differential 6 2125 CPs 2238 Enc 2121 Byte [15] 

Impossible differential 7 2125 CPs 2238 Enc 2125 Byte [15] 

Zero correlation linear 6 2123.6 KPs 2121 Enc 290.3 Byte [16] 

Zero correlation linear 7 2124.6 KPs 2203.5 Enc 2152 Byte [16] 

Meet-in-the-middle 7 2120 KPs 2185.3 Enc 2187 Byte [10] 

Meet-in-the-middle 7 2113 KPs 2135.1 Enc 2130 Byte [12] 

Boomerang 6 2128 KPs 2108 Enc 256 Byte [9] 

Boomerang 7 2128 KPs 2236 Enc 2184 Byte [9] 

Differential-linear 6 284.4 CPs 2112.8 Enc 296 Byte Section 4.1 

Differential-linear 7 284.6 CPs 2215.3 Enc 2224 Byte Section 4.2 

 

were improved by Akshima and others [11] and Bai and others 
[12], respectively. 

However, the security of ARIA against differential-linear 
attack is still unclear. Differential-linear attack, which was 
introduced by Langford and Hellman [18], is a combination of 
differential and linear attacks, where the basic idea is to split the 
cipher under consideration into two parts. A strong truncated 
differential exists for the first part of the cipher and a strongly 
biased linear approximation for the second part. Subsequently, 
these types of attacks were discussed and generalized by 
Biham and others [19], Langford [20], Liu and others [21], Lu 
[22], and Wagner [23]. A more rigorous analysis was provided 
recently by Blondeau and others [24] in FSE 2014, where a 
multidimensional generalization was introduced, which was 
defined for multiple input differences and multidimensional 
linear output masks. 

This paper focuses on the multidimensional differential-
linear attack on ARIA. Several five-round differential-linear 
distinguishers are constructed for ARIA, and the security of six 
rounds of ARIA-128 and seven rounds of ARIA-256 are 
evaluated by multidimensional differential-linear cryptanalysis. 
Our main contributions are summarized as follows. 

Construction of several differential-linear distinguishers 
for -round ARIA. In EUROCRYPTO 2016, Sun and others 
[25] proved that the longest rounds was four for the impossible 
differentials and zero correlation linear hulls of ARIA without 
considering the S-box details. In CRYPTO 2016, Sun and 
others [26] constructed several types of five-round zero-
correlation linear hulls for AES provided that the difference of  
two subkey bytes is known. However, this method cannot be 
employed to construct longer distinguishers for ARIA due to 
the specific usage of the neighboring confusion layer and 
involutional diffusion layer. This paper describes several 

differential-linear distinguishers for five-round ARIA with 
multiple input differences and multidimensional linear output 
masks, which can distinguish five rounds of ARIA from 
random permutations using about 284.8 chosen plaintexts. 

Launching attacks on ARIA with multidimensional 
differential-linear cryptanalysis. Five-round differential-linear 
distinguishers are given, thus we could mount a key-recovery 
attack against round-reduced ARIA using a multidimensional 
differential-linear attack. The attack on six-round ARIA requires 
283.1 chosen plaintexts and 2101.4 encryptions. Moreover, we 
propose an attack on seven-round ARIA with a data complexity 
of 283.1 chosen plaintexts and time complexity of 2215.3 encryptions. 
These are the first applications of the multidimensional 
differential-linear attack technique. Table 1 summarizes several 
previous types of attack and our results based on ARIA. 

The remainder of this paper is organized as follows. In 
Section II, we provide a brief description of ARIA and a 
formalized description of differential-linear cryptanalysis. In 
Section III, we construct several five-round differential-linear 
distinguishers for ARIA. Using these distinguishers, Section IV 
presents the attacks on six-round ARIA-128 and seven-round 
ARIA-256. In Section V, we give our conclusions. 

II. Preliminaries 

First, we give some notations and definitions that are used 
throughout this study, as well as a brief description of ARIA. 
We then provide a formalized description of differential-linear 
cryptanalysis. 

1. Notations and Definitions 

|A| denotes the number of elements in set A. Given a 
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subspace U of 2
n , let us denote U  as the orthogonal 

subspace of U with respect to the inner product of 2
n . We use 

the notation sp(a) to denote the vector subspace 2{0, } na   
spanned by a. The plaintexts and ciphertexts are denoted by p c. 
A 128-bit internal state A is represented as a 4 × 4 byte matrix. 
The symbol A[i] is used to express a byte of A, where i is the 
ordering of bytes i = 0, … , 15 and the first column includes 
A[0, 1, 2, 3], the second column includes A[4, 5, 6, 7], and so 
on. The number of rounds is denoted by Nr. The symbols Xi, Yi, 
and Zi denote the intermediate values before the substitution 
layer (SL), diffusion layer (DL), and AddRoundKey (AK) 
operations in the i-th round, respectively. The subkey of the i-th 
round is denoted by ki and the whitening key is denoted by k0. 
The symbol ui is used to represent the equivalent key with ui = 
DL(ki) . 

Given a vectorial Boolean function F on 2
n , the differential 

is given by ( )    with an input difference ∆ and an 
output difference δ, and its probability is defined as 

( , )( ) 2 |,|n
FPr A  

    

where ( , ) 2{ | ( ) ( ) }.nA x f x f x         

The linear approximation is given by ( )   with an 

input mask  and an output mask β, where its bias is defined as 

2

1
( , ) 2 { | ( ) || 0} ,

2
n n

F x F x x             

and the correlation of the linear approximation is given by 

( , ) |2 ( , ) 1| .F FCor       

2. Brief Description of ARIA 

ARIA is a block cipher of 128-bit, which uses variable key 

sizes; that is, Nr depends on the key sizes. ARIA iterates 12 

rounds for 128-bit key size, 14 rounds for 192-bit key size, and 

16 rounds for 256-bit key size. The round function comprises 

the following three basic operations. 

SL: Based on four 8 × 8-bit S-boxes S1, S2 and their inverses 
1

1S  , 1
2S  , ARIA has two types of SL: SL1 and SL2 (see Fig. 1). 

 

 

Fig. 1. Two substitution layers in ARIA. 
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SL1 is used in the odd rounds and SL2 is used in the even 
rounds. 

DL: The linear DL is a 16 × 16 involution binary matrix with  
branch number 8. 

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

AK: This is an operation for XORing the state and the 128-
bit round subkey. 

An additional whitening AK operation is performed before 
the first round and a DL operation is omitted in the last round. 
Our attacks do not utilize the key relations, so we omit the 
details of ARIA’s key schedule. For further details of ARIA, 
please refer to [1]. 

3. Differential-Linear Cryptanalysis 

In this section, we describe differential-linear cryptanalysis. 
For a n-bit block cipher 

2 1r r rE E E   with 1 2r r r   

rounds, we apply an r2-round linear approximation ( )     

to 
2r

E with a bias , and we apply an r1-round differential 

( )    to 
1r

E with probability p, (0 < p ≤ 1) where 

· 0.    Then, we have 

   
1 1

1

1

( ) ( ) ( ) ( )

( ) ( )

( ) ( ).

r r r r

r r

r r

E x E x E x E x

E x E x

E x E x

   

   

 

      

     

   

 

If we assume that the round functions involved behave 

independently and that the two inputs 
1
( )rE x  and 

1
( )rE x   of 

2r
E  behave as independent inputs with  

respect to the linear approximation, then when 

1 1
( ( ) ( )) 0,r rE x E x      the probability is  

   21
( ) ( ) 2 .

2r rPr E x E x        

For the other cases, we assume that the approximation is a 
random distribution and the probability is 1/2. Thus, we have 
the following. 
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2

2

( ) ( ) 0

(1/ 2 2 ) (1 ) / 2

.1/ 2 2

r rPr E x E x

p p

p

    

    

 





 

If the bias is sufficiently large, the distinguisher can be used 
as the basis of a differential-linear attack to distinguish Er from 
a random function. In general, the attack has a data complexity 
of 2 4( )o p  . 

In FES 2014, Celine and others [17] introduced a 
generalization of differential-linear cryptanalysis defined for 
multiple input differences and multidimensional linear output 
masks, which only relies on the independence of the two  
parts of the cipher. Denote the bias of a multidimensional 
differential-linear approximation as 

( , ) ( / {0} ) 1/ | | .U W Pr U W W     

Theorem 1. Assume that the parts 
1r

E  and 
2r

E  of the block 
cipher 

2 1r r rE E E   are independent. Then, 

 
2 /{0}

2
( , ) ( , ) ( , ),

| | nv

U W U v C v W
W 

 


         (1) 

where  1( , ) / {0} ( ) 1/ 2,rE
U v Pr U sp v    and 

2

2

/{0}
( , ) ( ( ))rw W

C v W Cor v y w E y


     is the capacity 

of the multidimensional linear approximation with nonzero 
input mask v and all nonzero output masks w in the space W. 

Using the linear attack framework [27]–[29], the data 
complexity of the multidimensional differential-linear 
distinguisher with input differences in U   and output masks 
in W is proportional to 

 
1

2 2

2 | | | | 1
.

| | ( , ) 2 | | ( , ) ( , )
v

W W

U U W U U v C v W



 
 

   (2) 

Estimating (1) requires the estimation of 2n|U| shorter 
differentials and 2n|W| linear approximations, which is clearly 
infeasible in real cases. To solve this, Blondeau and others [24] 
suggested decomposing it into two sums with respect to a set 

2
nV  , that is, 

 /{0}

2
( , ) ( , ) ( , ) .

| | v V v V

U W U v C v W
W  

     

Under the following assumption, the bias of differential-
linear approximation can be approximated by only considering 
a subspace V of 2

n . 
Assumption 1. (Assumption 2 in [17]). Given a set V, we 
assume that 

/{0}

2
( , ) ( , ) | | ( , ) .

| | v V

U v C v W U W
W 

         (3) 

III. Several Distinguishers for Five Rounds of ARIA 

In this section, we construct several differential-linear 
approximations over five rounds of ARIA, with two rounds of 
differentials and three rounds of linear hulls. 

Constructing the Differential Characteristics. The two-

round differential states that given a pair of ( , )p p  with 

nonzero differences in byte 7 and byte 13, the corresponding 

output differentials of byte 0 and byte 10 are equal after two 

rounds of ARIA, that is, 

2 2[0] [10]Z Z   , 

as shown in the upper part of Fig. 2. This can be deduced 
directly based on the properties of the DL layer. 

Constructing the Linear Characteristics. The SL in the 

odd round is different from that in the even round, so we 

consider that the linear trails starts from the odd round.     

Let the input linear mask for the third round be a   

( ,0,0,0;0,0,0,0;a 0,0, ,0;0,0,0,0),a  the output masks of 

SL for the third round be ( ,0,0,0;0,0,0,0;b b  

0,0, ,0;0,0,0,0),b  the output masks of SL for the 4-th round 

be (0,0, ,0;c c , ,0,0;0, ,0,0;0,0, , )c c c c c , and the output 

masks of SL for the 5-th round be ( ,0,0,0;0,0,0,0;d d  

0,0, ,0;0,0,0,0),d  where 8
2, , , /{0}a b c d  . The square 

correlation of the linear hull ( , )a d  can be computed by 

3
8
2

1 1 2
8
2

2 1

2 2
SL1 SL2

, /{0}

2
SL1

2 2 4

, /{0}

2 4

( , ) ( , ) ( , )

( , )

( , ) ( , ) ( , )

( , ) ( ,

E
b c

S S S
b c

S S

C a d Cor a b Cor b c

Cor c d

Cor a b Cor b a Cor b c

Cor c b Cor c





















2

1 1

2

2 2

) ( , )

( , ) ( , ).

S

S S

b Cor b c

Cor c d Cor d c

 

Using the computer algorithm, for any ( , )a d , we have 

3 3

2

61.7 53.7

/{0}

( , ) 2 , ( , ) 2 ,
n

E E
d

C a d C a d 



 


 

and 

3

2

45.9

, /{0}

( , ) 2 .
n

E
a d

C a d 






 

Let {(0, 0, 0, 0; 0, 0, 0, *;0, 0, 0, 0; 0, *, 0, 0)}U    

{( , 0, 0, 0; 0, 0, 0, 0; 0, 0, , 0; 0, 0, 0, 0)},W d d  and 

{( , 0, 0, 0; 0, 0, 0, 0; 0, 0, , 0; 0, 0, 0, 0)},V a a where 

2, / {0}nd a  and * denotes a nonzero byte, then we have 
46.9

/{0}

( , ) ( , ) 2 .
v V

U v C v W 



   

By (1) and Assumption 1, to distinguish five rounds of ARIA 
from random permutations, the required data complexity is 
about 
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8
93.8 84.8

16

|2 | 1
2 2 .

2(2 1)





 

IV. Differential-Linear Attacks on Round-reduced 
ARIA 

Consider the plaintexts p and p, which differ only at byte 7 
and byte 13, and c and c are the corresponding ciphertexts after 
five rounds of ARIA, respectively. We obtain 28 – 1 linear 
approximations: 

0,i id c d c     where 2 /{0}n
id  . 

Then, by using the multidimensional linear cryptanalysis 
technique proposed in [30], a key recovery attack based on  
the differential-multidimensional linear distinguisher can be 
mounted on ARIA using a standard technique such as guessing 
k bits of the last round subkeys.  

In brief, the framework of the  method is as follows. Let Vn 
denote the space of n-dimensional binary vectors. A function 

: n mg V V  with 0 1 1( , , ... , )mg g g g  , where gi is a linear 
approximation is called the vectorial linear approximation of 
dimension m. 

Let p be the probability distribution of m-dimensional linear 
approximations. The capacity of 0 2 1

( , ... , )mp p p


  is 
defined by 

 
2

0

21 (
,

)
m

i i
p

i iu

p u
C






                (4) 

where 0 2 1
( , ... , )mu u u


  is a uniform distribution. It is well 

known that Cp is equal to the sum of the square of the 

correlations of all 2m – 1 linear approximations. 
For (0,1, ... , 2 1)kk   , we obtain empirical probability 

distributions ,0 ,2 1
( , ... , )mk k k

Q q q


  by measuring the 
frequency of m-dimensional vectors, which are the Boolean 
values of m linear independent approximations. Then, the 
candidate keys are sorted according to their -statistics defined 
as 

2
,

0

( ) 2 ( 2 ) , 2 1,
m

m m m
k i

i

D k q M



     

which represent the l2-distance of the Qk from the uniform 
distribution. 

If the right key is ranked in position d from the top among 2d 
key candidates, we say that the attack has an advantage of (l – 
log2d) [31]. The advantage of the -method using statistic (4) 
is derived in Theorem 1 [30] by 

 224 (2 1)
,

4

p sNC P
d

M

  
  

where Ps is the probability of success, N is the amount of data, 

Cp is the capacity, M = 2m – 1 is the number of linear 
approximations, and 

2 / 21
( ) d .

2 π

x tx e t


    

1. Six-Round Attack 

Based on the five rounds of differential-linear 
approximations, which start from the first round and end at the 
fifth round, we present some key-recovery attacks on six-round 
ARIA-128. One round is appended after the differential-linear 
approximates, as shown in Fig. 3. The partial decryptions using 
the partial sum technique proceed as follows. 
1. Define a structure of 216 plaintexts, where p[7, 13] take all 

the possible 216 values and the remaining 14 bytes are fixed 
to some constants. Therefore, we can generate 162   

16 31(2 1) / 2 2   plaintext pairs using a structure and each 
of them satisfies the plaintext difference. Request the  

  

?
?

?
?

b

a

?
?

?
?

?
?

?
?

a

a

b
b b

b b
b

b

b

c

c

b
b b

b b
b

c
c c

c c
c

c

c

d
d d

d d
d

d

d

?Nonzero byte Unknown byte Zero byte

Truncated 
differentials

Linear trails
AK DLSL

AK DLSL

AK DLSL

AK DLSL

AK DLSL

Fig. 2. Differential-linear approximations for five-round ARIA.  
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Fig. 3. Differential-linear attack on six-round ARIA-128.  
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encryption of N structures to find N231 message pairs. 

2. Allocate 8-bit counters V1[x1] for 296 possible values of 

1 [2,4,5,9,14,15] || [2, 4,5,9,14,15]x c c  and initialize 

them as zero. For the corresponding ciphertext pairs after six 

rounds of encryption, extract the value of x1 and increase the 

corresponding counter V1[x1]. The required time complexity 

of this is N × 215 memory accesses in order to process the 

chosen plaintext-ciphertext pairs. If we assume that 

processing each memory access is equivalent to one round of 

encryption, then the time complexity of this step is about   

N × 215 one-round encryptions. 

3. Allocate a counter V2[x2] for 288 possible values of 2x   
1[4,5,9,14,15] || [4,5,9,14,15] ||c c I and initialize them as 

zero. Guess k6[2] and partially decrypt x1 to obtained the 

value of x2; that is, compute  

   1 1
6

1
1 1 6[2] [2] [2] [2] ,I S c k S c k       

and then update the corresponding counter by V2[x2] + = 

V1[x1]. The computation requires about 296 × 28 one-round 

encryptions. 

4. Allocate a counter V3[x3] for 272 possible values of 
2

3 [5,9,14,15] || [5,9,14,15] ||x c c I  and initialize them as 

zero. Guess k6[4] and partially decrypt x2 to obtain the value 

of x3; that is, compute  

   2 1
6161 [4] [4] [4] [4] ,I I S c k S c k      

and then update the corresponding counter by V3[x3] + = 

V2[x2]. The computation requires about 288 × 216 one-round 

encryptions. 

5. Allocate a counter V4[x4] for 256 possible values of 4x   
3[9,14,15] || [9,14,15] ||c c I and initialize them as zero. 

Guess k6[5] and partially decrypt x3 to obtain the value of x4; 

that is, compute 

6
3

6
2

2 2( [5] [5]) ( [5] [5]),I I S c k S c k      

and then update the corresponding counter by V4[x4] + = 

V3[x3]. The computation requires about 272 × 224 one-round 

encryptions. 

6. Allocate a counter V5[x5] for 240 possible values of 
4

5 [14,15] || [14,15] ||x c c I and initialize them as zero. 

Guess k6[9] and partially decrypt x4 to obtain the value of x5; 

that is, compute  

   4 3
6262 [9] [9] [9] [9] ,I I S c k S c k      

and then update the corresponding counter by V5[x5] + = 

V4[x4]. The computation requires about 256 × 232 one-round 

encryptions. 

7. Allocate a counter V6[x6] for 224 possible values of 
5

6 [15] || [15] |x c c I  and initialize them as zero. Guess 
k6[14] and partially decrypt x5 to obtain the value of x6; that is, 
compute  

   5 4 1 1
1 6 61[14] [14] [14] [14] ,I I S c k S c k        

and then update the corresponding counter by V6[x6] + = 

V5[x5]. The computation requires about 240 × 240 one-round 

encryptions. 
8. Allocate a counter V7[x7] for 28 possible values of x7 = I6 and 

initialize them as zero. Guess k6[15] and partially decrypt x6 

to obtain the value of x7; that is, compute  

   6 5 1 1
2 6 62[15] [15] [15] [15] ,I I S c k S c k        

and then update the corresponding counter by V7[x7] + = 
V6[x6]. The computation requires about 224 × 248 one-round 
encryptions. 

9. Allocate a counter vector V8[z]. For 28 values of x7, evaluate 

eight basis linear masks on 7x and add the evaluations to the 

vector z, before adding the corresponding V8[z]:V8[z] + = 

V7[x7]. Compute 
8 22 1

8 8
15 8

0

[ ] 1
2

2 2z

V z
T

N





 
 
 

  . 

10. Allocate a counter vector V9[k], repeat Step 2 through Step 
8 for all of the guessed keys, compute Tk, and store it in 
V9[k]. Sort the candidate keys according to the value of 
V9[k] and search for the right key from the top of the sorted 
keys. 

Let d = 32 be the advantage of the attack and Ps = 0.75 be  
the probability of success. The capacity of the five-round 
differential-linear characteristic is 2–45.9. The number of pairs 
required is about 299.4. The data complexity required for the 
attack is about 284.4 chosen plaintexts. 

In total, 48-bit key values are guessed during the encryption 
phase and only 216 key candidates survive after incorrect key 
filtration. The complexity of Step 2 is about 2112.8 six-round 
encryptions. The total complexity of Step 3 through Step 8 is 
no more than 2101.4 six-round encryptions. The total data 
complexity is about 283.1 chosen plaintexts, the time complexity 
is about 2112.8 six-round encryptions, and the memory 
requirement is about 296 bytes for counters. 

2. Seven-Round Attack 

We can append two rounds after the five-round differential-
linear approximations, as shown in Fig. 4. Similar to the six-
round attacks, let d = 48 be the advantage of the attack and   
Ps = 0.75 is the probability of success. The data complexity  
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Fig. 4. Differential-linear attack on seven-round ARIA-256.  
 
required for the attack is about 284.6 chosen plaintexts. The time 
complexity is about 2215.3 seven-round encryptions and the 
memory requirement is about 2224 bytes for counters. 

V. Conclusion 

In this study, we applied multidimensional differential-linear 
cryptanalysis to evaluate the security of the block cipher ARIA, 
which is the first application of the new technique since it was 
introduced in FES 2014. We presented a six-round attack on 
ARIA-128 and a seven-round attack on ARIA-256, which have 
lower data complexity than previous attacks. The key features of 
our five-round multidimensional differential-linear distinguishers 
are the special properties of truncated differential and multi-linear 
hull approximations of the ARIA block cipher. From this 
viewpoint, multidimensional differential-linear cryptanalysis can 
be treated as an improved version of linear hull attacks. The 
attacks described in the present study are preliminary attempts 
and the first investigation of the strength of ARIA against 
differential-linear cryptanalysis. We suggest that further research 
should consider differential-linear cryptanalysis of ARIA. 
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