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Abstract

K. Nyberg and L.R. Knudsen showed a prototype of a DES-like cipher”! which has a provable
security against differential cryptanalysis. But in the last year, at FSE' 97 T. Jakobsen and L.R.
Knudsen broke it by using higher order differential attack and interpolation attack™. Furthermore
the cipher was just a theoretically proposed one to demonstrate how to construct a cipher which is
provably secure against differential cryptanalysis®™ and it was suspected to have a large complexity
for its implementation. In this paper the two improved results for the efficient hardware and
software implementation and its security are presented. For the improvement, we proved that x’

over GF(2"), for any integer n, has its linearity (in the sense of linear cryptanalysis) is bounded

[1 +2n/2*1]
by o

, where [n)], means the greatest even integer less than n. G. Lachaud and J. Wolfmann

also showed a similar result in", but in this paper we achieve our result in a different approach, from the
well known result on elliptic curve theory. Finally in section 4, we introduce a modified prototype cipher
of Knudsen-Nyberg Cipher. keywords : differential cryptanalysis, linear cryptanalysis, DES-like cipher,
basis of finite field

1. Introduction

In 1993, K. Nyberg and L.R. Knudsen
suggested a prototype of a DES-like cipher
which is 6-round iterated (we call this cipher
K.N and it was published in the journal of
cryptology(1995). In the journal" they showed
that if the round function f in a DES-like cipher

is a permutation which has maximal
differential probability p,,. and the round
keys(k,) are independent and uniformly
random then the differential probability of an
s-round differential for s>3 is less than or
equal to 2p°,... And they showed that the
permutationsf(x)=x*" of GF(2?y with k=0 mod d,
ged(k, n)=1, and n=0dd have their differential
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probability 24, in particular x* in GF(2*) has its
differential probability 2.

Using these two results they showed that the
cipher K.N is provably secure against a
differential cryptanalysis. In fact, its s-round(s
> 3) iterated cipher has its differential
probability 2*°. But because of the simple type
of algebraic function x°, it was broken by higher
order differential attack and interpolation
attack™ with only 512 chosen plaintexts.
Moreover its software implementation
complexity is suspected to be very high. KN s

round function f is as the following :

3
GF(2y% GF(2°y% GF(2")% GF(2%),

where ¢ is a function which extends its
argument by concatenation with an affine
combination of the input bits, and d is a
function which discards one bit from its
argument. This is a provably secure cipher
against conventional differential cryptanalysis,
but it has two problems. The first is that it has
very high complexity to construct or design the
round function f(x)=x*in GF(2*”) and the
second is that the non-linear order of the
output is low with respective to the input and
this can be exploited to amount an attack. In
the following we overcome the two problems
and get an implementation of a slightly

modefied cipher from K.N.

2. Linearity of x

In this section we prove that the linearity of
x" in GE(2") is bounded by 2-G" for any
integer n. For the proof we prepare some well

known results(following 3 propositions).

Proposition 2.1 The following quadratic

polynomial equation of one variable X,
X+aX+b=0, a0, bEGF(2")

is irreducible over GF(2") if and only if Tr ( b )=
0, where Tr() is an absolute trace mapping".
Proof. Dividing the above equation by #* and
letting T=-Y gives a new quadratic equation
T*+T= -} .

L(x)=x'+x, x€GF(2") is a linear transformation

And noting that

of which kernel consists of GF(2), we get the
result.

Proposition 2.2 Every basis B={¢,,¢,,...,9,.} of
GF(2"y over GF(2) has its unique dual basis"!

B ={y, w,, ... . w,} such that

1ifi=j

T )=
MOV = if i

The following definition and proposition can

be refered to".

Definition 2.1 The set E of points (x,y) € GF(2") X

GF(2") satisfying the following equation

Y+bxy+by =ax+ax+ax +a,a, b€ GF2")

and the identity(null) element O is called elliptic
curve over GF(2") and is denoted by E(GF(2")). And
the number of elements of E is called the order of
E(GF(2")) and is denoted by #E(GF(2")).(see ")

Proposition 2.3 (Hasse)
Let #E(GF(2"))=g+1-t. Then 1t| < 2,[q

Definition 2.2
The linearity L(f) of £: GF(2")—GF(2") is defined by

| # {x: o f(x)=kx}-2"
2“-]

L(f)=max,,
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where x, £(x), A, and w are considered as binary
represented vectors in GF(2") by some basis

B={¢1/¢7J"'/¢n}

and the notation

’

'means the inner product
operation.

Now we are ready to prove the following theorem.

Theorem 2.1 The linearity of the permutation x* in
GF(2") is bounded by

[1+2""],
o

where [n], means the greatest even integer less than
n.
Proof. Let E(GF(2")) : y*+xy+Ax*+e# =0 and let
S,0 =#{x:0x"}A-x. If we regard the vectors x, x*
as the binary represented elements in GF(2")
with basis B and regard the vectors A, © as the
binary vectors in GF(2") with the dual basis B’,
of B, then easily we get

Ax=Tr(Ax) and @x'=Tr(wx").

And so, by proposition 2.2, S, ,=#{x.Tr{Ax+wx"=0).
Meanwhile, by proposition 2.1,
HE =2 # (x| Tr (252 )=0, x #0}+#{(0, w), 0}
=2 X #{Tr(Ax+Tr(@’x*)=0, x #0}+2
=2 X #{Tr(Ax)+Tr(ax')=0, x #0}+2
=2(S, .-1)+2=25, .

Note, by proposition 2.3 and from the above
result, that

2+1-2 2" <#E(GF(2"))=2S,, < 2"+1+242" (2.1)
and noting that the central value of eq.(2.1) is
[1+27"]e

even integer, we got |5, -2""| < o

Hence,

| # {x:0x" +Ax}-2"7
zn'l

L(x)=max,,,

n~1
=max,, 152 1

211*1
n/2+1
<max, A¥2_1
' 2
This completes the proof.

Since, in the case of n=even, in the equation(2.1)
25, is even and 2'+1+242" is odd integer, we
get 2'+2-2,/27<2S, <2+22" and so |S,,-2""|
<2, From this L(x")=2""*". For example, for
the case of n=32, the permutation x* in GF(2%)
has its linearity 2" and so its squared linearity"
is 2%, Moreover, from", we know that x* has its
differential uniformity 4. Hence we got a
permutation which is resistant against
differential cryptanalysis and linear
cryptanalysis. In the following section, using
this permutation, we propose an efficient

implementation of K.N.

3. IMPLEMENTATION

To begin with, for the implementation of x* in
GF(22)=GF(2*) we will use a recursive method.
Let y=1€GF(Q2), v.+y, w+1=0, y, € GF(2"),

V.., +1=0, y, €GF(2™), n=0,1, 2, 3, 4.

Then each v, ,GF(2*"") is irreducible element
over GF(2”' ™. Now we can take {1, v, } as a
basis of GF(2""") over GF(2") for each n=0, 1, 2,
3, 4 and so for a € GF(2”"") can be represented
by

o=m+az Y, 1, 1€ GF(2Y)
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=(m, @) taking its coordinates in GF(2%"),

and again, by this way, a can be represented of
form (b, b:), b€ GF(2"""). We can do this process
recusively down to the prime field GF(2). and
get a binary representation of a of n
coordinates in GF(2) For example, if we
consider a=(1, 1, 0, 1) in GF(2*) then

a=((1, 1), (0, 1)=(1, DHO, Dye=(1+ys)+(0+y1)ye.

Theorem 3.1 Let o=m+a: s, &1, 22 € GF(2¥").
Then

of'=8" (m+a Wt Y )=(8 (it y), 67 a2),
where d=a"r+a: (m+a:y%.).

Proof. Let or'=(x, y)=x+y s, x, y € GFQ2").

Then, using the formula y?u=1+y. .. and
noting that the expansion of the product oo’=(a,
a2)(x, y) must equal to (1, 0)=1, we get a linear
system of equations of x, y. Solving this linear

system of equations, we easily get the result.

Note, from the above theorem, that
inversion of an element in GF(2*"") can be
calculated by one inversion in GF(2%), one
squaring in GF(2%"), two additions in GF(2™),
one multiplication of an element in GF(2™") and
v € GF(2""), and three products in GF(2%).
Let’ s examine these operations in the same

way.

[Multiplication in GF(2*"")]
(ata2 o, ) (DiHba Yo, )=h+hH( bbb+ B ) Yo,

where h=aibi, b=a:bs, t==(m+a:}+(br+b2)

This operation needs 6 additions, 3

multiplications in GF(2”"), and 1 multiplication

of an element in GF(2*") and
[Squaring in GF(2"")]
(@ta Y =(+a )+ a2 Yo Yan

This operation needs 1 addition 2 squaring in
GF(2”), and 1 multiplication of an element in
GF(2*") and y.

[Multiplication of o=(a1,4:) and y.1]
(m+a:Wost) Wan=azs+H(a+az2) Yo Yo,

This operation needs 1 addition in GF(2"""), 1
multiplication of an element in GF(2”") and .

From the above results, we can calculate the
total number of bit by bit operations in GF(2)
to get the inversion of an element in GF(2™") by
the way of iterating n=5 down to 0 as in the
above. Some tedious calculation gives us that
one inversion in GF(2%¥) can be designed by
about 1800 exclusive OR gates and 360 logic
AND gates.

4. Network Structure and
Performance

Here we slightly modify the cipher K.N" to
escape the interpolation attack®. We construct
the round function, x” in GF(2”), by using the
quadratic recursived binary representation of
32-bit input text as in section 3.

Let f=x" and let P=(Py, Py, Ps, P)€ GF(2®),
P::8-bit binary vectors, be a 32-bit text. Define a
linear permutation T of GF(2%”) as T(P)=(Ps, P,
Ps, P»). Then it s very difficult to find any

algebraic polynomial to represent T which is in
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accord with the recursive representation in
section3. We construct the cipher’ s one round

Feistel network structure as the following:

- XL, XR : 32-bit left and right half input texts
- XL=XR, XR=XLO®T((XR®K)")

where k, is a 32-bit round key. And iterating
this by 6 rounds. Then, since the linearity and
differential probability of T o x"' preserves the
linearity and differential probability of x*, the
modified round function has its squared
linearity and its differential probability 2% and
by the result of [1] its 3 round iteration gives
the cipher the total differential probability and
the total linearity 2. Moreover the
composition of T and x” makes the structure
more resistant against higher order and
interpolation attacks, since, for the
interpolation attack, we should get some
algebraic polynomials or fractional
representations for each round function, but T
is a linear transformation and under the
suggested basis representation it is hard to
represent it as a polynomial type equation.

For the hardware implementation, to design
the function x" in GF(2¥) comes to be very
efficient since, at least, the number of logic
gates is lower than the one needed in the
cipher, MISTY"), and it uses a simple recursive
structure.

For the software implementation, on the
120MHz pentium PC, it encrypts 3.5Mbytes/ sec

with precomputed tables of 1Kbytes.

5. Conclusion

We showed, in this paper, some linearity

bound of x' and we suggested a method to
implement x* in GF(2%) by using recursively
generated irreducible elements through the
quadratic extensions of the prime(base) field
GF(2). In particular we have the very
important result that x' in GF(2") is very
robustic against both differential and linear
cryptanalysis. And using this result we made a
slightly modified prototype cipher from
Knudsen and Nyberg' s which is still provably
secure against DC and LC attacks. And
moreover its 6-round encryption has some high
speed performance, about 3.5 Mbytes/sec with
1Kbytes, for

implementation on 120MHz pentium PC and is

memory cost, software
suspected to be very efficient also for hardware

implementation.
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