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Abstract 
 

SIMON and SPECK are two families of lightweight block ciphers that have excellent 

performance on hardware and software platforms. At CRYPTO 2019, Gohr first introduces 

the differential cryptanalysis based deep learning on round-reduced SPECK32/64, and finally 

reduces the remaining security of 11-round SPECK32/64 to roughly 38 bits. In this paper, we 

are committed to evaluating the safety of SIMON cipher under the neural differential 

cryptanalysis. We firstly prove theoretically that SIMON is a non-Markov cipher, which 

means that the results based on conventional differential cryptanalysis may be inaccurate. 

Then we train a residual neural network to get the 7-, 8-, 9-round neural distinguishers for 

SIMON32/64. To prove the effectiveness for our distinguishers, we perform the distinguishing 

attack and key-recovery attack against 15-round SIMON32/64. The results show that the real 

ciphertexts can be distinguished from random ciphertexts with a probability close to 1 only by 

28.7 chosen-plaintext pairs. For the key-recovery attack, the correct key was recovered with a 

success rate of 23%, and the data complexity and computation complexity are as low as 28 and 

220.1 respectively. All the results are better than the existing literature. Furthermore, we briefly 

discussed the effect of different residual network structures on the training results of neural 

distinguishers. It is hoped that our findings will provide some reference for future research. 

 

 

Keywords: Deep Learning, Cryptography, Lightweight Cipher, Differential Cryptanalysis, 

SIMON 
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 1. Introduction  

Differential cryptanalysis has been introduced in 1990 by Biham and Shamir [1] to break the 

Data Encryption Standard (DES) block cipher, and today it has been considered as one of the 

most basic cryptanalysis methods. The vital step in differential cryptanalysis is to find the 

differential characteristics of the cryptographic primitives, so that an attacker can construct 

differential distinguishers to carry out the differential attack. On this basis, cryptanalysts have 

proposed improved methods such as multiple differential cryptanalysis [2], truncated 

differential cryptanalysis [3], and impossible differential cryptanalysis [4, 5]. 

The development of deep learning brings some new ideas for cryptanalysis. Deep Learning 

has made great improvements in recent years on many difficult tasks, especially in machine 

translation, image recognition and automatic driving. In the field of cryptography, existing 

work using machine learning techniques mainly focuses on side-channel analysis [6-8] and 

cryptographic implementations [9-11]. However, the successful applications of deep learning 

in other fields have inspired researchers that deep learning may be able to find hidden rules or 

non-randomness that have not been found under some classic cryptanalysis methods, so as to 

conduct black-box cryptanalysis. 

At CRYPTO 2019, Aron Gohr [12] creatively showed how to teach neural networks to 

exploit differential properties of round-reduced SPECK32/64. Under the Markov assumption, 

Gohr first computed the full differential distribution table of round-reduced SPECK32/64 with 

a fixed input difference. Hence, the all-in-one differential characteristics for 5-, 6-, 7-, 8-round 

SPECK32/64 are reported. After this, he presented differential distinguishers based on deep 

residual neural networks that achieve better accuracies than the analogous classical 

distinguishers using the full differential distribution table. Besides, based on a variant of 

Bayesian optimization, he developed a highly selective key search policy which, together with 

the neural distinguishers, can be used to reduce the remaining security of 11-round Speck32/64 

to roughly 38 bits. The inspiring attempt of this work opened a forward-looking study for the 

application of deep learning in black-box cryptanalysis, more and more cryptanalysts are 

beginning related research, such as [13]. In [14], the author breaks the full rounds of 

SIMON32/64 with “text key” using deep learning.  However, the security of SIMON with 

random keys under neural differential analysis has not been evaluated. At ESORICS 2020, 

Hou et al. [15] use deep learning to achieve linear attack on DES with plain-cipher pairs. This 

is another important advance in the application of deep learning in cryptanalysis. 

Constructing an effective neural network is the most critical point of cryptanalysis using 

deep learning. In [12], the author chooses a ResNet (Residual Network) with ReLU (Rectified 

Linear Unit) before addition to train the differential distinguishers. The residual network is 

proposed by He Kaiming et al. at CVPR 2016 [16], and they compared several variants of the 

residual network with various usages of activation in [17]. However, the network adopted in  

[12] is not considered the best performing network in [17]. Therefore, on the issue of training 

neural differential distinguishers, which network works best is worthy of study. In addition, 

whether the deep learning assisted differential cryptanalysis can be generalized to other ciphers 

to achieve better results than the conventional differential cryptanalysis is also unknown. 

Our Contributions References [12] show that for non-Markov ciphers, neural distinguishers 

perform better than conventional differential distinguishers, because the differential transition 

matrix calculated under the Markov assumption is often inaccurate in this case. Therefore, 

after proving that SIMON is a non-Markov cipher, we apply the method of training neural 

differential distinguishers to the SIMON cipher. As a result, we present 11-, 12-, 13-round 

neural differential distinguishers of SIMON32/64 with the highest accuracies to date.  
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Secondly, to prove the advantages of our distinguishers, we use them to perform the 15-

round distinguishing attack and 15-round key-recovery attack on SIMON32/64. Our high-

accuracy neural distinguishers make the chosen plaintexts required for successful 

distinguishing attacks being roughly 221 times lower than an analogous classical distinguisher 

in [18]. For the key-recovery attack, we successfully recover the 15-round subkey with 220.1 

computation complexity and 28 data complexity. This is currently the minimum complexity 

required to attack 15-round of SIMON32/64. To our knowledge, this is the first time that the 

security of SIMON32/64 with random keys is evaluated under neural differential cryptanalysis. 

Lastly, to study which kind of residual network works best, we use five variants of the 

residual network and various parameters to train neural differential distinguishers of SIMON 

and SPECK respectively. We conclude that the structure of the residual network will affect 

the convergence rate of training, but the impact on training accuracy and validation accuracy 

is negligible (on the order of magnitude 10−4). 

2. Preliminaries 

2.1 Brief Description of SIMON Cipher 

SIMON is a family of lightweight block ciphers designed by Beaulieu et al. in 2013 [19]. The 

family consists of ciphers having a range of block size 2n and key size k: 32/64, 48/72, 48/96, 

64/96, 64/128, 96/96, 96/144, 128/128, 128/192, and 128/256. In this paper, we mainly focus 

on SIMON32/64 and abbreviate it as SIMON32. SIMON has a Feistel-like construction, which 

uses a simple round function composed of three operations: bitwise XOR(⊕), bitwise 

AND(&), and left circular shift( ). Let ( ,i iL R ) be the input of the i-th round of SIMON. 

Then the output of the i-th round is ( 1 1,i iL R+ + ), and ( 1 1,i iL R+ + ) is computed as follows: 

 

1 1( ) , ,i i i i i iL F L R K R L+ +=   =           (1) 

 

 where 

 

𝐹(𝑥) = ((𝑥 ≪ 1) ∧ (𝑥 ≪ 8)) ⊕ (𝑥 ≪ 2).                         (2) 
 

 

 
Fig. 1.  The round function of SIMON 
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The round function of SIMON is shown in Fig. 1. As the key schedule is irrelevant to our 

differential analysis, we omit its description and refer the readers to [19]. Since SIMON is of 

great significance for protecting the information security of Internet of Things devices, there 

are various papers published on the cryptanalysis of it [20-26]. 

2.2 Brief Description of Deep Residual Neural Network 

Deep residual neural network, which is one of the most effective and widely used 

convolutional neural networks (CNN) currently, is proposed by He Kaiming et. al at CVPR 

2016 [16]. The core idea is to add an “identity shortcut connection” to a normal convolutional 

neural network, skipping one or more convolutional layers, to solve the problem of gradient 

disappearance when training convolutional neural network models. 

 

 
 

Fig. 2.  Five residual block structures [17] 

 

The basic unit of the residual network is called the residual block. The original residual 

block has a structure in Fig. 2(a). The batch normalization (BN) is adopted after each weight 

layer, and ReLU is used after BN except that the last ReLU in a residual block is after 

elementwise addition. Fig. 2(b-e) show several variants of the residual block by rearranging 

the activation functions of ReLU and BN. 

He et al. compared the performance of the five residual block structures by testing the error 

rate of networks using each residual block above on a classification task. The results show that 

Net(e) performs significantly better than other networks, while Net(b) and Net(c) perform the 

worst. More details of the deep residual network can be found in papers [16, 17]. 

For three reasons, we choose the residual neural network to train distinguishers. First, in 

the differential cryptanalysis, we hope that the neural network can learn the ciphertext 

differences obtained by XORing the ciphertext pairs. The residual neural network has been 

proved to be able to accomplish this task well. Second, we experimented with various network 

models such as fully connected networks and convolutional neural networks, and the residual 

neural network performed best. Third, in reference [12], the author did similar work, and his 

best result was also obtained by residual neural network. 

 

(e) full pre-activation  (b) BN after 

addition 
(c) ReLU before 

addition 

(d) ReLU-only  

pre-activation 
(a) original 
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3. Neural Differential Attack on SIMON32 

3.1 Non-Markov Property of SIMON 

The concept of Markov ciphers is first introduced by Lai, Massey and Murphy [27] at 

Eurocrypt 1991. 

Definition 1 (Markov Chain [27]). Given a sequence of discrete random variables 

0 1, , , rv v v  is a Markov chain, if for 0 i r  , 

 

1 1 1 1 0 0 1 1( | , , , ) ( | ).i i i i i i i i i iP v v v v P v v     + + − − + += = = = = = =                (3) 

 

If 
1( | )i iP v v + = =  is independent of i for all α and β, the Markov chain is called 

homogeneous. 

Definition 2 (Markov Cipher [27]). An iterated cipher with round function ( , )Y f X K=  is 

a Markov cipher if there is a group operation ⊗ for defining differences such that, for all 

choices of ( 0)    and ( 0)   , 

 

( | , )P Y X X   =  = =                                                 (4) 

 

is independent of γ when the subkey K is uniformly random. 

Theorem 1 [27]. If an r-round iterated cipher is a Markov cipher and the r-round keys are 

independent and uniformly random, then the sequence of differences 
0 1, , , rX Y Y Y =    , 

is a homogeneous Markov chain. Moreover, this Markov chain is stationary if ∆P is uniformly 

distributed over the non-neutral elements of the group. 

According to Theorem 1, the probability of an r-round differential characteristic can be 

computed as, 

 

1 1 2 2 0 1 1

1

( , , , | ) ( | ).
r

r r i i

i

P Y Y Y X P Y X      −

=

 =  =  =  = =  =  =        (5) 

 

However, for non-Markov ciphers, we cannot use the equation above to compute the 

probability of a characteristic anymore, as the differences in the former rounds usually have a 

significant effect on the differences of the latter rounds. 

Theorem 2. The cipher SIMON is a non-Markov cipher. 

Proof. Define the group operation ⊗ as bitwise XOR. The round function of SIMON is 

denoted as 

 

0 1 0 1 0 1 0( , ) ( , ) ( ( ) , ).k kR x x y y F x x x= =                                         (6) 

 

The function ( )kF x  is as follows, 

 

𝐹𝑘(𝑥) = (𝑥 ≪ 1) ∧ (𝑥 ≪ 8) ⊕ (𝑥 ≪ 2) ⊕ 𝑘.                                   (7) 

 

 For the given input (x0, x1) input difference 0 1( , )  = and output difference 0 1( , )  = , 
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0 0 1 1 0 1 0 1

0 0 0 1 0 0 1

( | , ) ( ( , ) ( , ) ( , ))

                                            (( ( ) ( ) , ) ( , )).

k k

k k

P Y X X P R x x R x x

P F x F x

      

    

 =  = = =    =

=    =
           (8) 

 

Hence, 

0 1

0 0 0 1 0 0 1

0 ,
( | , )

( ( ) ( ) ), .k k

P Y X X
P F x F x

 
  

    


 =  = = = 

  =  =

，
           (9) 

Therefore, the round function 0 1( , )kR x x has Markov property if and only if the function 

( )kF x  has Markov property. 

We have  

 

𝐹𝑘(𝑥0 ⊕ 𝛼0) = ((𝑥0 ⊕ 𝛼0) ≪ 1) ∧ ((𝑥0 ⊕ 𝛼0) ≪ 8) ⊕ ((𝑥0 ⊕ 𝛼0) ≪ 2) ⊕ 𝑘,        (10) 

 

𝐹𝑘(𝑥0) = (𝑥0 ≪ 1) ∧ (𝑥0 ≪ 8) ⊕ (𝑥0 ≪ 2) ⊕ 𝑘.                               (11) 

 

 As all operations are bitwise, the distributive law holds for XOR, that is 

 

(𝑥 ⊕ 𝑦) ≪ 𝑖 = (𝑥 ≪ 𝑖) ⊕ (𝑦 ≪ 𝑖),                                         (12) 

 

( ) ( ) ( ).x y z x z y z  =                                                 (13) 

Then we can get, 

 
𝐹𝑘(𝑥0 ⊕ 𝛼0) ⊕ 𝐹𝑘(𝑥0) = ((𝑥0 ≪ 1) ∧ (𝛼0 ≪ 8)) ⊕ ((𝑥0 ≪ 8) ∧ (𝛼0 ≪ 1)) 

                                   ⊕ ((𝛼0 ≪ 1) ∧ (𝛼0 ≪ 8)) ⊕ (𝛼0 ≪ 2).            (14) 

 

Obviously, the probability of 
0 0 0 1 0( ) ( )k kF x F x    =   is related to x0. Therefore, 

( )kF x  does not satisfy the Markov property, i.e., the cipher SIMON is a non-Markov cipher. 

Since SIMON is not a Markov cipher, the differential cryptanalysis under the Markov 

assumption is not accurate, and the theoretical results will differ from the real situation to some 

extent. In contrast, neural distinguishers constructed with deep learning have no such 

disadvantages. 

3.2 Neural Distinguishers of SIMON32 

Paper [12] provides a method for constructing distinguishers using differential characteristics, 

which can be simply described as follows. 

1. Generating random and uniformly distributed keys Ki and plaintext pairs Pi with a fixed 

input difference as well as a vector of binary-valued real/random labels Li. 

2. To produce training and validation data for the k-round cipher, the plaintext pair Pi was 

then encrypted for k rounds if Li was set, while otherwise the ciphertext was generated by 

encrypting the freshly generated random plaintexts. 

3. Pre-process ciphertext pairs to fit the format required by the neural network and start 

training. 

Using this method, Gohr trained distinguishers for 5-, 6-, 7-, 8-round SPECK32/64 that 

achieve better accuracies than the differential distinguishers using the full differential 

distribution table. There are two main reasons for the improved results. One is that SPECK is 
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not strictly a Markov cipher, and the other is that the neural distinguisher can exploit features 

besides the differential distribution table. 

In this paper, we extend the method for training neural distinguishers to SIMON cipher, 

and the specific procedure as Algorithm 1. 

 

Algorithm 1 Training Neural Distinguishers 

Input: Objective cipher E, neural network Net, an input difference δ, number of chosen plaintext 

pairs n. 

Output: a neural distinguisher N. 

1: ( )TD    

2: P n  randomly generated plaintexts 

3: K n randomly generated keys 

4: L  a randomly generated vector of n binary labels 

5: for i = 0 to n − 1 do 

6:        if L[i] = 0 then 

7:                
i iP P 
   

8:        else 

9:                
iP
 a freshly generated random plaintext 

10:        else if 

11:        ( , )
i i i

C E P K  

12:        ( , )i i iC E P K
  
  

13:        Append TD by ( [ ], ( , ))i iL i C C
  

14: end for 

15: Train Net with TD 

16: Net training reports accuracy acc 

17: if acc > 0.5 then 

18:        N Net after training 

19: else 

20:        Abort 

21: end if 

 

According to Algorithm 1, we use 0x0000/0400 =  as the input difference (based on a 

differential characteristic given in [25]) to train a depth-10 residual net like the one in [12], 

and finally get 7-, 8-, 9-round neural differential distinguishers of SIMON32 with high 

accuracies. Combined with a 4-round differential transition 0x0001/ 4404 0x0000/0400→ , 

we can extend them to 11-, 12-, 13-round distinguishers at a fairly low additional cost. The 

results are in Table 1 and Table 2. Our 13-round distinguisher is by far the most accurate. 

Prior to this, the accuracies of the best 13-round distinguishers were 2-30.22 in [21] and 2-28.79 in 

[18]. 

It should be noted that accuracy is used here as a measure of the effectiveness of the 

distinguishers, because it is naturally related to the distinguishing advantage of classical 

cryptographic distinguishers. Certainly, the median key rank and training loss are also valid 

measures in an attack, but they do not significantly improve the results compared to accuracy. 

A detailed discussion of deep learning and neural net is out of the scope of this work, and 

interested readers may refer to paper [12] and relevant books such as [28, 29]. 

In Table 1, the 7-, 8-, 9-round neural differential distinguishers for SIMON32. N7-N9 are 

neural distinguishers using ciphertext pairs with chosen-plaintext difference 0x0000/0400 for 

7, 8, 9 rounds. Accuracy is the probability that a sample will be correctly recognized. The true 
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positive rate is the probability that a positive sample can be recognized as true, and the true 

negative rate is the probability that a negative sample can be recognized as false. 
 

Table 1. The 7-, 8-, 9-round neural differential distinguishers for SIMON32 

Rounds Distinguisher Accuracy True Positive Rate True Negative Rate 

7 N7 0.9826 0.9986 0.9671 

8 N8 0.7497 0.7231 0.7798 

9 N9 0.6320 0.5297 0.7681 

     

    In Table 2, the 11-, 12-, 13-round distinguishers for SIMON32 obtained by adding the 4-

round differential transition in front of the 7-, 8-, 9-round neural differential distinguishers. 

The differential characteristics are represented as hexadecimal, and N7/N8/N9 are neural 

distinguishers using ciphertext pairs with chosen-plaintext difference 0x0000/0400 for 7, 8, 9 

rounds. p represents the differential transition probability of the truncated difference and the 

true positive rate of neural distinguishers. The last row is the probability of the full 

distinguishers. 
 

Table 2. The 11-, 12-, 13-round distinguishers for SIMON32 

Rounds Differential Distinguisher p 

0 (0x0001, 0x4404) 1 

1 (0x4400, 0x0001) 2−2 

2 (0x1000, 0x4400) 2−2 

3 (0x0400, 0x1000) 2−2 

4 (0x0000, 0x0400) 2−2 

4 → 11/12/13 N7/ N8/ N9 0.9986/0.7231/0.5297 

acc  0.9986/0.7231/0.5297 × 2−10 

3.3 Distinguishing Attack Against SIMON32 

We have extended our neural 9-round neural distinguisher to a 13-round distinguisher by 

prepending a 4-round differential transition 0x0001/4404 0x0000/0400→  with a probability 

of 2-10 (presented in Table 2). We can perform a distinguishing attack against 15-round 

SIMON32. 

The 13-round distinguisher can be extended by another round at no additional cost, since 

no key addition happens in SIMON before the first nonlinear operation. Consider the plaintexts  

0 1( , )P p p=  and 
0 1( , )P p p  = , and denote the ciphertexts after one round of SIMON as 

0 1( , )C c c=  and 
0 1( , )C c c  = . Then we have 

 
𝑐0 = (𝑝0 ≪ 1) ∧ (𝑝0 ≪ 8) ⊕ (𝑝0 ≪ 2) ⊕ 𝑝1 ⊕ 𝑘, 

𝑐0
′ = (𝑝0

′ ≪ 1) ∧ (𝑝0
′ ≪ 8) ⊕ (𝑝0

′ ≪ 2) ⊕ 𝑝1
′ ⊕ 𝑘,                               (15)          

                     

1 0

1 0

,

.

c p

c p

=

 =
                                                                 (16) 
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Hence, the difference 
0 1( , )c c   of C and C' is 

 
𝛥𝑐0 = 𝑐0 ⊕ 𝑐0

′  

     = ((𝑝0 ≪ 1) ∧ (𝑝0 ≪ 8) ⊕ (𝑝0 ≪ 2) ⊕ 𝑝1) ⊕ ((𝑝0
′ ≪ 1) ∧ (𝑝0

′ ≪ 8) ⊕ (𝑝0
′ ≪ 2) ⊕ 𝑝1

′ ), (17) 
 

1 1 1 0 0.c c c p p  =  =                                                      (18) 

 

Obviously, 0 1( , )c c   is independent of the subkey k and only related to plaintext pair (P, 

P'). Therefore, the 13-round distinguisher can be extended by an additional round by choosing 

the appropriate plaintext pairs to make the difference 0x0001/4404. Using this distinguisher, 

the 15-round distinguishing attack is performed as Algorithm 2.  

 

Algorithm 2 Distinguishing Attack Against SIMON32 

Input: Objective cipher Oracle, a 13-round neural distinguisher N, number of chosen plaintext pairs 

n. 

Output: The output of Oracle is True (real) or False (random). 

1: ( , )P P n  random plaintext pairs that validate the difference 0x0001/4404 after one round of 

encryption. 

2: ( , ) ( , )C C Oracle P P   

3: 0s   

4: for i = 0 to n − 1 do 

5:        for k in Subkeys do 

6:               ( [ ], [ ]) DecryptOneRound(( , ), )i i i iD k D k C C k
 

  

7:                [ ] ( [ ], [ ])i i iv k N D k D k


  

8:                [ ] [ ] / (1 [ ])i i iv k v k v k −  

9:        end for 

10:        Average([ [ ], { }])i iv v k k Subkeys   

11:        / (1 )i i iv v v +  

12:        if vi > 0.5 then 

13:                1s s +  

14:                if s > 1 then 

15:                        return True 

16:                end if 

17:        end if 

18: end for 

19: return False 

 

We explain Algorithm 2 in detail. To distinguish 15-round SIMON32 with a 13-round 

distinguisher, we first generate n random plaintext pairs that validate the differential transition 

0x0001/4404 0x0000/0400→  after one round of encryption. Then we go through all subkeys 

to decrypt the output of oracle with one round of SIMON32. Put the partially decrypted 

ciphertexts ( [ ], [ ])i iD k D k
 into the 13-round distinguisher, which will report a score [ ]iv k  

between 0 and 1. If and only if the oracle is indeed 15-round SIMON32 and the subkey k is 

correct, [ ]iv k  should be greater than 0.5 and closer to 1. Otherwise, [ ]iv k  is going to be less 

than 0.5 and close to 0. Then we summarize the results into a score vi for the ciphertext pairs 

by transforming the scores into real-vs-random likelihood ratios and computing the average 

value. Finally, the number of vi greater than 0.5 is greater than 1, we believe the oracle is 
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SIMON32. 

In the practical attack, we use k probabilistic neutral bits [30] to boost the signal from this 

distinguisher. The neutral bits can create from each plaintext pair a plaintext structure 

consisting of 2k plaintext pairs that conform to the same differential transition

0x0001/ 4404 0x0000/0400→ , and thus reduce the number of chosen plaintexts by 2k times. 

Obviously, the more plaintexts an attacker chooses, the higher the attack success rate will be. 

We set n to 28.7 to ensure a success rate of more than 99%, so the data complexity is 28.7 chosen-

plaintext pairs. With a probabilistic neutral bit set consisting of bits 17, 19, 21, 23, 25 of the 

cipher states (with a probability very close to 1), 213.7 plaintext pairs that conform same 

differential transition can be generated. 

The computation complexity mainly consists of two parts. One is the partial decryption 

(line 6 in Algorithm 2), which is equivalent to 

 

13.7 16 13.7 25.81
2 + 2 2 2

15
                                                    (19) 

 

times of 15-round SIMON32 encryption at most. The other is the cost of running the neural 

networks (line 7 in Algorithm 2). According to the experimental statistics, the time required 

to run the neural network of the 9-round distinguisher is about 15 times that required to run 

15-round SIMON32 encryption. So, the cost of running the neural networks is equivalent to  

 
16 13.7 33.615 2 2 2                                                         (20) 

 

times of 15-round SIMON32 encryption. It should be noted that this is the equivalent 

computational complexity only on the CPU. In reality, the neural network runs on GPU, and 

the time required is negligible compared with the encryption and decryption on CPU. In our 

experiments, a distinguishing attack was performed less than a minute on a PC with Intel i7-

9700 CPU and Nvidia RTX 2080Ti GPU.  

According to the principle of distinguishing attack, there are two types of misjudgment. 

One is to judge the real output as random data. The probability is 

 

13.7

13.7

1
-10 -10 2

2
0

C ( 2 ) (1 2 ) 0.008063,i i i

i

TPR TPR −

=

=    −                        (21) 

 

where TPR = 0.5297 is the true positive rate of N9, and 2-10 is the differential transition 

probability of the truncated difference 0x0001/ 4404 0x0000/0400→ .  

The other is to judge the random data as the real output. The probability is 

 

13.7

13.7

1
32 32 2 13

2
0

1 C ( 2 ) (1 2 ) 9.248158 10 ,i i i

i

FPR FPR − − − −

=

= −    −                (22) 

 

where FPR = 1-TNR = 0.2319 is the false positive rate of N9, and 2-32 is the probability that a 

random ciphertext pair conforms to the truncated difference 0x0001/ 4404 0x0000/0400→ .  

Therefore, the distinguishing advantage is 

 

1 0.991937.adv  = − −                                                 (23) 
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3.4 Key-recovery Attack Against SIMON32 

To show the utility of our neural distinguishers, we construct a partial-key recovery attack 

based on the 13-round distinguisher. The basic idea is that for each plaintext pair with the 

difference 0x0001/4404, we decrypt the resulting ciphertexts under all final subkeys and rank 

each partially decrypted ciphertext using our neural distinguisher. Then we combine scores 

returned for individual ciphertext pairs into a score for the key, and finally sort the keys in 

descending order according to their score. A brief description of attack steps is as follows and 

the details can be seen in Algorithm 3. 

1. Generate n random chosen-plaintext pairs 
0 1, , nP P −

 such that the output difference of 

the first round is 0x0001/4404 = . Obtain the corresponding ciphertext pairs 

0 1, , nC C −
. 

2. For each last-round subkey k, decrypt the Ci under k to get ( [ ], [ ])k

i i iD D k D k= . 

3. Use the 13-round differential distinguisher to get scores [ ]iv k  for each partially 

decrypted ciphertext pair 
k

iD . 

4. For each k, combine the scores [ ]iv k  into one score vk. 

Sort the keys in descending order according to their score vk. 

 

Algorithm 3 Key-Recovery Attack Against SIMON32 

Input: Objective cipher Oracle, a 13-round neural distinguisher N, number of chosen plaintext pairs 

n. 

Output: A list of candidate keys CK. 

1: ( , )P P n  random plaintext pairs that validate the difference 0x0001/4404 after one round of 

encryption. 

2: ( , ) ( , )C C Oracle P P   

3: {}CK    

4: for k in Subkeys do 

5:        for i = 0 to n − 1 do 

6:               ( [ ], [ ]) DecryptOneRound(( , ), )i i i iD k D k C C k
 

  

7:                [ ] ( [ ], [ ])i i iv k N D k D k


  

8:        end for 

9:        
1

2

0

log ( [ ] / (1 [ ]))
n

k i i

i

v v k v k
−

=

 −  

10:        Append (k, vk) to CK. 

11: end for 

12: sort CK in descending order of vk. 

13: return CK 

 

Similar to distinguishing attack, we first generate n random plaintext pairs that validate the 

difference 0x0001/4404 after one round of encryption. Then for each possible subkey, we use 

it to decrypt all ciphertexts with one round of SIMON32. Put the partially decrypted 

ciphertexts ( [ ], [ ])i iD k D k
 into the 13-round distinguisher and get a score [ ]iv k  between 0 and 

1. Then we use the real-random likelihood ratio 

 
1

2

0

log ( [ ] / (1 [ ]))
n

k i i

i

v v k v k
−

=

= −                                               (24) 
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to combine the scores of individual decrypted ciphertext pairs into a score for the key. It is 

proved to be effective in [12].  

With the same neutral bits set, we conduct a lot of experiments, and finally set n to 28 to 

balance the success rate and complexity. The data complexity is 28 chosen-plaintext pairs. The 

computation complexity of operations on CPU is equivalent to 

 

8 16 8 20.11
2 + 2 2 2

15
                                                     (25) 

 

times of 15-round SIMON32 encryption at most. As we have explained above, the time of 

running a neural network on GPU is negligible compared with operations on CPU, so it is not 

calculated here. We make a successful attack criterion, that is, if the correct key ranks among 

the top five in CK, we consider the attack to be successful. We repeat 100 key recovery attacks 

against different keys, and finally successfully recovered 23 times, so the experimental attack 

success rate is about 23%. The success rate obtained by different success criteria will of course 

be different, so this success rate is only used as a reference for the effectiveness of the key-

recovery algorithm. 

4. Performance of Different Network Structures 

Using deep residual neural networks, Gohr [12] achieves better results than the best classical 

cryptanalysis on 11-round SPECK32. However, the network adopted by Gohr is not 

considered the best performing network in [17]. In order to study which structure choice is 

helpful to result in better distinguishers, we experiment with five residual network structures 

(showed in Fig. 2) on SIMON and SPECK respectively. We visualize part of the experimental 

data as Fig. 3 and Fig. 4. On an RTX 2080 Ti graphics card, an epoch of training according to 

the basic training schedule for one of the ten-block networks takes about 110s at batch size 

5000. 
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Fig. 3.  Training five residual networks to distinguish 5-, 6-round SPECK32 output for the input 

difference 0x0040/0000 from random data 

 

    

     
Fig. 4.  Training five residual networks to distinguish 9-round SIMON32 output for the input 

difference δ from random data. In the top two figures, 0x0000/0400 = , and  0x0000/0008 =  in 

the bottom two 

 

By analyzing the experimental data, we have several interesting findings, which may be of 

some reference value for the choice of neural network models in future studies. Of course, 

another discovery might be made by considering more disparate network structures such as 
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multilayer perceptron (MLP) and recurrent neural network (RNN), but this would be a fairly 

complex discussion that could lead to another paper. Here we only focus on the influence of 

different residual network structures on the distinguishers. We summarize the following four 

rules. 

1. Training accuracy may not always reflect the validation accuracy. As can be seen from 

the figures above, the model with the highest training accuracy is usually not the one with 

the highest validation accuracy, while the model with the lowest training accuracy does 

not necessarily have the worst performance on the validation data set. Training accuracy 

only reflects the performance of network on the training data, and only the validation 

accuracy can reflect the performance of network on new data. Therefore, the model with 

the highest validation accuracy should be selected. We speculate that paper [12] chose 

Net(c) because of its high training accuracy on the 5-round distinguisher for 

SPECK32/64. Based on our experimental results, it is reasonable to believe that other 

networks can achieve better results on the same task. 

2. Different networks have significant effects on training results. As shown in Fig. 4, for the 

distinguishers of 9-round SIMON32, the highest network accuracy is nearly 0.022 higher 

than the lowest network accuracy, resulting in a reduction of about 8% chosen plaintexts 

in an attack. Besides, the convergence rates of training are obviously different. 

3. For different ciphers and even for different rounds or different input differences of the 

same cipher, the optimal network may be different. Intuitively, we tend to think that a 

model will always fit a cipher and will not change greatly with the number of rounds and 

other minor changes. In fact, as we can see, for 5-round SPECK32, Net(e) achieves the 

highest accuracy in 140 epochs, while for 6-round SPECK32, Net(d) ends up with the 

best results. For 9-round SIMON32, Net(a) and Net(d) perform better with input 

difference 0x0000/0400, while Net(b) is the best with input difference 0x0000/0008. This 

inspires us not to hastily apply a certain model to other rounds or even other ciphers just 

because it performs well on individual n-round ciphers. 

4. Different random training data have little effect on training results. For each distinguisher, 

we randomly generate different chosen plaintexts for 10 experiments, and there are only 

negligible differences in final accuracy (on the order of magnitude 10-4). 

Frankly, it might make more sense to discuss the differences in the results of taking 

different network structures, such as fully connected networks, but it is not pointless to focus 

on the details of residual networks. As mentioned above, small changes in the structure of the 

residual block can lead to a nonnegligible improvement in the accuracy of the model, thereby 

reducing the number of chosen plaintexts that are required to attack. This is a revelation that 

the improvement of the model does not necessarily require a large change in structure, and 

some small changes may also have considerable effects. 

5. Conclusion 

In this paper, we focus on evaluating the strength of the SIMON32/64 under the neural 

differential cryptanalysis and get better results than conventional differential cryptanalysis. 

We firstly prove theoretically that SIMON is a non-Markov cipher, which means that the 

analysis results based on the conventional differential cryptanalysis under the Markov 

assumption may be inaccurate. The neural differential cryptanalysis is independent of the 

Markov assumption, so we use ciphertext pairs generated by plaintext pairs with a fixed input 

difference to train 7-, 8-, 9-round neural differential distinguishers, and extend them to 11, 12, 

13 rounds with a known differential transition. In order to prove the effectiveness of our neural 
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differential distinguishers, we use them to perform the distinguishing attack and key-recovery 

attack on the 15-round SIMON32. Our results may not be an attack with the most rounds 

against SIMON, but they are the least costly at the same level of data and computation. Besides, 

our work demonstrates the effectiveness of deep learning assisted differential cryptanalysis on 

SIMON, and by further improving the neural network, better results are bound to be produced. 

Furthermore, the effect of different residual network structures on the training results of 

neural distinguishers are studied and some observations are presented. It is hoped that our 

findings will provide some reference for future research. 

To be sure, much further work remains to be done. For example, we only consider limited 

variations of the techniques used in [12], and do not discover significant effects. In the future, 

we plan to study which components of the network structure used are necessary to obtain good 

results and how to quickly and accurately determine the neural network for a certain cipher. 

These allow cryptanalysts to be more targeted when constructing neural networks. Whether 

neural differential analysis can still achieve better results on Markov cipher than conventional 

differential cryptanalysis is also worth studying, since there is currently no deep learning 

assisted differential cryptanalysis for Markov ciphers. 
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