• Title/Summary/Keyword: Difference method

Search Result 18,190, Processing Time 0.043 seconds

Recent Advancement in Renal Replacement Therapy

  • Ota, Kazuo
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.121-126
    • /
    • 1984
  • A new approach to texture classification for quantitative ultrasound liver diagnosis using run difference matrix was developed. The run difference matrix comprised the gray level difference along with a distances. From this run difference matrix, we defined several vectors and parameters such as DOD, DGD, DAD vector, SHP, SMO, SMG, LDE, LDEL etc.Each parameter values calculated in fatty, cirrhotic, normal and chronic hepatitic liver images were plotted in a plane and we found that RDM method was more sensitive to small structural changes than the conventional run length method and showed improved classification ability between the diseases.

  • PDF

2-D Consolidation Numerical Analysis of Multi_Layered Soils (다층 지반의 2차원 압밀 수치해석)

  • 김팔규;류권일;남상규;이재식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.467-474
    • /
    • 2000
  • The application of Terzaghi's theory of consolidation for analysing the settlement of multi-layered soils is not strictly valid because the theory involves an assumption that the soil is homogeneous. The settlement of stratified soils with confined aquifer can be analysed using numerical techniques whereby the governing differential equation is replaced by 2-dimensional finite difference approximations. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D.M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M) which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE METHODS FOR PRICING BINARY OPTIONS

  • Kim, Hong-Joong;Moon, Kyoung-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.413-426
    • /
    • 2011
  • Two types of new methods with variable time steps are proposed in order to valuate binary options efficiently. Type I changes adaptively the size of the time step at each time based on the magnitude of the local error, while Type II combines two uniform meshes. The new methods are hybrid finite difference methods, namely starting the computation with a fully implicit finite difference method for a few time steps for accuracy then performing a ${\theta}$-method during the rest of computation for efficiency. Numerical experiments for standard European vanilla, binary and American options show that both Type I and II variable time step methods are much more efficient than the fully implicit method or hybrid methods with uniform time steps.

Numerical Analysis of Laminar Natural Convection Heat Transfer around Two Vertical Fins by a Spectral Finite Difference Method

  • Haehwan SONG;MOCHIMARU Yoshihiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.56-57
    • /
    • 2003
  • A numerical solution is presented for the natural convection heat transfer from two vertical fins using a spectral finite difference method. Virtual distant boundary conditions for two bodies that are compatible with plume behavior and with an overall continuity condition are introduced. A boundary-fitted coordinate system is formed. Streamlines, isotherms, mean Nusselt numbers and drag & lift coefficients are presented for a variety of dimensionless parameters such as a Grashof number and a Prandtl number at a steady-state. Extensive effectiveness of a spectral finite difference method was established.

  • PDF

A New Approach for the Derivation of a Discrete Approximation Formula on Uniform Grid for Harmonic Functions

  • Kim, Philsu;Choi, Hyun Jung;Ahn, Soyoung
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.529-548
    • /
    • 2007
  • The purpose of this article is to find a relation between the finite difference method and the boundary element method, and propose a new approach deriving a discrete approximation formula as like that of the finite difference method for harmonic functions. We develop a discrete approximation formula on a uniform grid based on the boundary integral formulations. We consider three different boundary integral formulations and derive one discrete approximation formula on the uniform grid for the harmonic function. We show that the proposed discrete approximation formula has the same computational molecules with that of the finite difference formula for the Laplace operator ${\nabla}^2$.

  • PDF

Scene Change Detection using the Automated Threshold Estimation Algorithm

  • Ko Kyong-Cheol;Rhee Yang-Won
    • The Journal of Information Systems
    • /
    • v.14 no.3
    • /
    • pp.117-122
    • /
    • 2005
  • This paper presents a method for detecting scene changes in video sequences, in which the $chi^{2}$-test is modified by imposing weights according to NTSC standard. To automatically determine threshold values for scene change detection, the proposed method utilizes the frame differences that are obtained by the weighted $chi^{2}$-test. In the first step, the mean and the standard deviation of the difference values are calculated, and then, we subtract the mean difference value from each difference value. In the next step, the same process is performed on the remained difference values, mean-subtracted frame differences, until the stopping criterion is satisfied. Finally, the threshold value for scene change detection is determined by the proposed automatic threshold estimation algorithm. The proposed method is tested on various video sources and, in the experimental results, it is shown that the proposed method is reliably estimates the thresholds and detects scene changes.

  • PDF

A Gridless Finite Difference Method for Elastic Crack Analysis (탄성균열해석을 위한 그리드 없는 유한차분법)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2007
  • This study presents a new gridless finite difference method for solving elastic crack problems. The method constructs the Taylor expansion based on the MLS(Moving Least Squares) method and effectively calculates the approximation and its derivatives without differentiation process. Since no connectivity between nodes is required, the modeling of discontinuity embedded in the domain is very convenient and discontinuity effect due to crack is naturally implemented in the construction of difference equations. Direct discretization of the governing partial differential equations makes solution process faster than other numerical schemes using numerical integration. Numerical results for mode I and II crack problems demonstrates that the proposed method accurately and efficiently evaluates the stress intensity factors.

A Study on Phase Bearing Error using Phase Delay of Relative Phase Difference

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • This study proposes a method to reduce the phase error of the received signal to detect the object bearing. The phase shift of the received signal occurs due to the multipath of the signal by natural structure or artificial structures. When detecting the direction of the object using radio waves, the phase of the received signal cannot be accurately detected because of the phase bearing error in the object detection direction. The object detection direction estimation depends on the phase difference, antenna installation distance, signal source wavelength, frequency band and bearing angle. This study reduces the error of the phase bearing by using the phase delay of the relative phase difference for the signals incident on the two antennas. Through simulation, we analyzed the object direction detection performance of the proposed method and the existing method. Three targets are detected from the [-15°, 0°, 15°] direction. The existing method detects the target at [-13°, 3°, 17°], and the proposed method detects the at [-15°, 0°, 15°]. As a result of the simulation, the target detection direction of the proposed method is improved by 2 degrees compared to the existing method.

The Frequency-Speed Characteristics of Ultrasonic Motor by the Change of Phase difference (위상차 변화에 따른 초음파 모터의 주파수-속도 특성)

  • Kim D.O.;Jung G.Y.;Oh G.K.;Kim Y.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.146-149
    • /
    • 2003
  • To control the position, velocity and torque of the ultrasonic motor, a great variety of method are proposed such as the amplitude, phase difference, frequency and so on. In the case of phase difference method, it has some advantages: it can control the direction and velocity of rotation only adjusting the phase difference and it has wide control-band. During the USM driving on adjusting phase difference, its characteristic was transformed by the change of resonance-frequency of stator, which means that the resonance frequency is different according to the phase difference. Consequently, we need to set up the most suitable driving frequency according to each phase difference.

  • PDF

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.