DOI QR코드

DOI QR Code

VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE METHODS FOR PRICING BINARY OPTIONS

  • Received : 2009.09.21
  • Published : 2011.03.31

Abstract

Two types of new methods with variable time steps are proposed in order to valuate binary options efficiently. Type I changes adaptively the size of the time step at each time based on the magnitude of the local error, while Type II combines two uniform meshes. The new methods are hybrid finite difference methods, namely starting the computation with a fully implicit finite difference method for a few time steps for accuracy then performing a ${\theta}$-method during the rest of computation for efficiency. Numerical experiments for standard European vanilla, binary and American options show that both Type I and II variable time step methods are much more efficient than the fully implicit method or hybrid methods with uniform time steps.

Keywords

References

  1. Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, Frontiers in Applied Mathematics, 30. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
  2. F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81 (1973), 637-659. https://doi.org/10.1086/260062
  3. D. J. Duffy, Finite Difference Methods in Financial Engineering, Wiley Finance Series. John Wiley & Sons, Ltd., Chichester, 2006.
  4. P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. Sci. Comput. 23 (2002), no. 6, 2095-2122. https://doi.org/10.1137/S1064827500382324
  5. M. B. Giles and B. Carter, Convergence analysis of Crank-Nicolson and Rannacher time-marching, J. Computat. Fiance 9 (2006), 89-112. https://doi.org/10.21314/JCF.2006.152
  6. E. G. Haug, The Complete Guide to Option Pricing Formulas (2nd ed.), MaGraw-Hill, 2007.
  7. S. Heston and G. Zhou, On the rate of convergence of discrete-time contingent claims, Math. Finance 10 (2000), no. 1, 53-75. https://doi.org/10.1111/1467-9965.00080
  8. D. J. Higham, An Introduction to Financial Option Valuation, Mathematics, stochastics and computation. Cambridge University Press, Cambridge, 2004.
  9. A. Q. M. Khaliq, D. A. Voss, and K. Kazmi, Adaptive ${\theta}-methods$ for pricing American options, J. Comput. Appl. Math. 222 (2008), no. 1, 210-227. https://doi.org/10.1016/j.cam.2007.10.035
  10. Y. K. Kwok, Mathematicsl Models of Financial Derivatives, Springer-Verlag Singapore, 1998.
  11. P. Lotstedt, J. Persson, L. von Sydow, and J. Tysk, Space-time adaptive finite difference method for European multi-asset options, Comput. Math. Appl. 53 (2007), no. 8, 1159-1180. https://doi.org/10.1016/j.camwa.2006.09.014
  12. R. C. Merton, Theory of rational option pricing, Bell J. Econom. and Management Sci. 4 (1973), 141-183. https://doi.org/10.2307/3003143
  13. K.-S. Moon, R. Nochetto, T. von Petersdorff, and C. S. Zhang, A posteriori erroranalysis for parabolic variational inequalities, M2AN Math. Model. Numer. Anal. 41 (2007), no. 3, 485-511. https://doi.org/10.1051/m2an:2007029
  14. D. M. Pooley, K. R. Vetal, and P. A. Forsyth, Convergence remedies for non-smooth payoffs in option pricing, The Journal of Computational Finance 6 (2003), 25-40. https://doi.org/10.21314/JCF.2003.101
  15. R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math. 43 (1984), no. 2, 309-327. https://doi.org/10.1007/BF01390130
  16. E. Reimer and M. Rubinstein, Unscrambling the binary code, Risk 4 (1991), 37-41.
  17. R. Seydel, Tools for Computational Finance, Springer Verlag:Berlin, 2003.
  18. D. Tavella and C. Randall, Pricing Financial Instruments: The finite difference method, John Wiley & Sons, 2000.
  19. P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, 1993.