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VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE
METHODS FOR PRICING BINARY OPTIONS

Honaioong Kmm' anD Kyouna-Sook Moon?

ABSTRACT. Two types of new methods with variable time steps are pro-
posed in order to valuate binary options efficiently. Type I changes adap-
tively the size of the time step at each time based on the magnitude of
the local error, while Type II combines two uniform meshes. The new
methods are hybrid finite difference methods, namely starting the com-
putation with a fully implicit finite difference method for a few time steps
for accuracy then performing a #-method during the rest of computation
for efficiency. Numerical experiments for standard European vanilla, bi-
nary, and American options show that both Type I and II variable time
step methods are much more efficient than the fully implicit method or
hybrid methods with uniform time steps.

1. Introduction

Options are traded on all of the world’s major exchanges. Among them,
binary options or digital options are not only very popular in the over-the-
counter (OTC) markets but also important tools for designing more complex
financial derivatives, such as equity-linked-securities (ELS). For instance, hold-
ing the simplest cash-or-nothing call option pays a predefined cash amount at
expiration date if the option is in-the-money, i.e., the prices of the underlying
assets exceed a prescribed strike price, otherwise pays nothing. Therefore the
payoff at expiration date has a discontinuity at the strike price. Several exotic
options, such as asset-or-nothing options, supershare options, gap options etc,
are also binary type options.
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Let us assume that the underlying assets follow geometric Brownian mo-
tions. Based on no arbitrage arguments and no cost for trading, Black, Scholes
and Merton derived the celebrated Black-Scholes partial differential equation
(PDE) for the valuation of European stock options in [2], [12]. The prices of
binary options also satisfy the classical Black-Scholes PDE with final conditions
containing discontinuities and may have the closed forms, see [16]. However, in
many cases, binary options are embedded in complex structured derivatives or
American type, therefore one need to apply numerical approximations in order
to valuate the derivatives.

Among several approaches of numerical methods, we consider the most pop-
ular finite difference method (FDM), since it is efficient and can handle Amer-
ican type easily, see [1, 3, 8, 10, 17, 18, 19] for a general framework of FDM
for option pricing. Even though the solution to the Black-Scholes equation is
smooth, the final condition has discontinuity and this produces oscillation in
the numerical solutions using classical finite difference methods. In particular,
the Greeks, such as A(delta, the partial derivative of option price with respect
to asset price) and I'(gamma, the second partial derivative of option price with
respect to asset price), which are very important quantities to measure the sen-
sitivity of the option prices for hedging, are even harder to compute accurately
using classical finite difference methods.

In order to cure this oscillation from the initial discontinuities, there have
been studied different numerical methods. One approach is to use cell-averaged
payoff instead of grid sampled payoff function to reduce the error near disconti-
nuity, see [18]. Heston and Zhou [7] proposed a smoothing approach, to smooth
the payoff function at singular points, and an adjustment approach to replace
the binomial prices prior to the end of the tree by the Black-Scholes values.
Rannacher [15] proposed a simple damping procedure, starting the computa-
tion with the backward Euler steps and showed that the procedure yields the
full second order accuracy. This Rannacher idea was applied to Black-Scholes
equation in [5]. Pooley, Vetzal, and Forsyth [14] compared various smooth-
ing techniques together with Rannacher time-stepping based on finite element
analysis.

The purpose of this paper is to develop an efficient and accurate numeri-
cal method to price options with payoff containing discontinuities. We first
introduce adaptive mesh refinement for time steps (denote Type I), in order
to compute accurately the prices near discontinuity. In this work, we focus on
adaptivity for time steps only in order to see the effects of variable time step,
but one can simply extend the method to spacial adaptivity as well, see time
and space adaptive algorithms of finite difference method [11] for pricing Eu-
ropean vanilla options and of finite element method [13] for pricing American
options. See also [9] and [4] for the penalty method with time adaptivity for
American option problems. Our adaptive refinement strategy is performed by
an a posteriori error approximation based on local errors.
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For standard binary options, the discontinuity lies only in the initial condi-
tion, therefore we need to use small time steps initially then use bigger time
steps to keep the efficiency. Therefore, specially for binary options, we suggest
a method which combines two uniform grids in space and time (denote Type
II). Type II method uses smaller grid for the first few time steps then uses
bigger grid. However, if there exists several singularities on a given exotic de-
rivative, then the Type I method may refine the time steps near each singular
point. In this respect, Type I is more general than Type II method.

In particular, inspiring from Rannacher in [15], both Type I and II methods
are hybrid finite difference methods, namely initially we apply a fully implicit
finite difference method to cure the oscillations from the discontinuities, then
later we uses any finite difference method such as the Crank-Nicolson method
during the rest of computation for an efficiency.

Several numerical tests in Section 4 show that both Type I and II methods
approximate the solution more accurately and efficiently than uniform time
stepping method. Type I adaptive method gets more efficient than Type II
and uniform methods as the accuracy increases, see the figures in Section 4 .

The outline of the paper is as follows. In Section 2 we first set up the problem
to price European and American binary options. In Section 3 we explain new
numerical schemes with adaptive time stepping. In Section 4 we show the
numerical experiments and the conclusions are drawn in Section 5.

2. Option pricing

Let s(t) be the price of the underlying asset at time ¢ (0 <t < T') with a given
expiry date T" and follow a geometric Brownian motion with a constant interest
rate » > 0 and a constant volatility o > 0. From no arbitrage arguments, the
value, V(s,t) of binary options under classical Black-Scholes model can be
computed by solving the following partial differential equations

oV oV 1, ,0%°V

(1) E‘FTSg"‘iO'Sﬁ—TV:

with a final condition
(2) V(s,T) = A(s),

where A(s) is a payoff function at expiry T
For instance, European cash-or-nothing call options pay a cash amount A
at expiration T if the option is in-the-money, i.e.,

A if s(T) > K,
As(T)) =< A/2 its(T) =K,
0 otherwise,
where K > 0 is a predefined strike price. Here, since the probability of the

event s(T) = K is zero, in order to be consistent with the formula, we assume
that A/2 is paid off in this at-the-money case, see also [8]. From the change of
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variables, one can convert the PDE (1) to a heat equation and find an analytic
formula for the cash-or-nothing call option, V(s,t) = C(s,t), described in [16]

2
ovT —t

Here N(z) is the cumulative normal distribution function. From this formula,
we can readily compute the Greeks for call options by

_0C  Ae"T-HN'(d) 1 a1,

3)  C(st) = AeT-ON(a), = T 30T 2

4 Ac=—="2 " N(z)= -3
(4) ¢ = 5 oy (z) 7=°
and
2 —r(T—t) /
(5) Te: oC Ae di N (d), dy =d+oVT —t.

T 052 o2s3(T—1t)

The boundary conditions of European cash-or-nothing call options are the fol-
lowing: for s = 0, the asset remains at zero for all times, thus the payoff is also
zero and for large s > 0, it is almost certain to get the cash rebate A, thus we
may use the following as our boundary condition in a computational domain.

(6) C(s,t) = Ae "I for large s.

American options are similar to European options except that the holder
may exercise the option at any time before the expiration. Therefore the exer-
cise time is not known in priori, this is so called free boundary problem [1, 19].
From no arbitrage arguments, the prices of American options satisfy the fol-
lowing linear complementary problem, see [8, 19]

oV av 1 0%V
7 At rs— + 0%’ — — 1V <0,
@) ot T "7as 27 7 a2 =
(8) V(s,t) > A(s(t)), 0<t<T,s >0
for each s,t one of (7) and (8) is at equality

with the final condition V(s,T) = A(s), where A(s) is a payoff function at
expiry T. The above linear complementary problem does not admit analytic
solutions, therefore we should rely on numerical approximations.

For instance, for the American vanilla put case the payoff is A(s) = max(K —
$,0) with a strike price K > 0. The boundary conditions of American vanilla
put options V(s,t) = P(s,t) are the following: For s = 0, the asset always
remains zero, therefore the payoff at expiry is the exercise price, i.e., P(0,t) =
K forall0 < ¢t < T. Similarly if s is large, then the option is unlikely to
produce a positive payoff, so we have P(s,t) = 0as s »>ooforall 0 <t <T.
In our numerical test, for sufficiently large sy,ax, we use the Neumann boundary
condition

oprP

g(Smax,t) =0 forall0<¢t<T.
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In the numerical computations, we first convert the original backward equa-
tion in (1) and (2) to the following forward equation using the change of vari-
ables u(z,7) =V (s, T —t), x =s,7 =T — t,

du ou 1 5 ,0%u
(9) E:Tm%%—iam@—ru,
u(z,0) = A(z).

Similarly, for American case, we have
ou ou 1 0%u
> 2.2

(10) E_Tmaiz+§0'l’ @_TU,

(11) V(z,7) > Ax), 0<7<T,z >0,
for each x, 7 one of (10) and (11) is at equality,
u(x,0) = A(z).

3. Numerical schemes
3.1. Finite difference methods

The domain [Zmin, Tmax] X [0, T] is discretized into M intervals in space
and N intervals in time,

Tmin =20 < T1 <+ <TM = Tmax, aAMd0=Tp <71 < - <7y =T
Given a function u = u(x, 7), let U}' denote the numerical approximation of u
at (z,7) = (z;,7,). The time derivative u, is approximated by

U’_ﬂ+1 _7n
J

J
A + O(ATmax) ,

where a time step size A7, := 741 — T, and ATy denotes the maximum of

AT,’S, ATpax := max, A7,. The first spatial derivative u, is approximated by
the f-method

uT(xjaTn) =

yrtl _ pntl Ur Un

- Yt S b BNk S bt} 2
Uz (25, Tn) =0 5AL +(1-6) N + O(Az?)

with the spatial step size Ax := (Zmax — Tmin)/M and the second spatial
derivative ug, by
n+1 n+1 n+1 n+1
:erH =20 + U +(1_9)Uf+1 =207 + U
Az Ax?

We apply these approximations into the equation (9) to obtain the following
system

LLO(Az?).

umz(xja Tn)

n n nAT” n n n n
1 AT,
(12) ~ArrUf + 51 (U7) A;Q (0 (U — 20t 4 U

+(1=0) (Ufy, =207 + UY)) -
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The weight 8 = 0 gives the explicit scheme, § = 1 the fully implicit scheme,
and 6 = 1 the Crank-Nicolson method. Rannacher [15] introduced a combi-
nation of the fully implicit (f = 1) method and the Crank Nicolson (6 = 1/2)
method. Rannacher method uses the fully implicit scheme for the first 4 time
steps and then applies the Crank-Nicolson scheme for the remaining of time
steps. In this study, we extend this idea and want to consider a combination
of various #-methods with various time stepping schemes. The fully implicit
method is applied during the early stage to reduce effects from initial or bound-
ary conditions or from variables having discontinuity or large gradient (if it ex-
ists). Later time dissipation dominates in the solution of Black Scholes equation
regardless of initial abrupt changes, then both implicit and explicit schemes can
be used. Note that the explicit scheme (6 = 0) is easy to implement, and does
not need to solve a system of equations. But it is limited by the stability con-
dition, which limits the size of the time step. For example, Figure 1 represents
the values of I' (gamma) of the European cash-or-nothing call option in Sec-
tion 4.2 at 7 = 1/1200 from the explicit finite difference schemes with uniform
Az =0.25 and A7 = 1/2400. Even for this short time 7 = 1/1200 = 2Ar, the
explicit scheme with uniform time step (the dotted line) triggers an oscillation
near the discontinuity.

o  Exact
---- Explicit (Uniform)
— Explicit (Variable) ||

Gamma
o

FIGURE 1. Gamma from the explicit methods with uniform
and variable (Type I) time steps

In order to overcome this shortcoming, we introduce the combination of -
methods with variable time step based on the adaptive mesh refinement, which
may even reduce the computational cost.
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3.2. Time-stepping algorithms

Giles [5] introduces methods with variable step sizes in time. But, they
choose a very small A7 initially, then increases the step size in time regardless
of the magnitude of the error, which eventually degrades the accuracy of the
computation. Forsyth [4], on the other hand, controls the step size based on
the computation results by introducing a timestep selector. We introduce two
types of time stepping methods, Type I and Type II. The Type I variable time
step method uses non-uniform A7 based on the following algorithm and fixed
Az. At each time 7 = 7,,, u(z;, 7, + A7,) is approximated in two different
ways, once using A7, and once again using AT, /2 as time step size. Let U;H'l

and U ;”“1 denote approximations of u(z;, 7, + A7,) with time step sizes A7,
and AT, /2, respectively. If the error defined by

(13) E" — HUn+1 _ (7n+1||oo

is smaller than pre-defined tolerance, TOL, we use U. ;”“1 as approximation of
u(zj, 7, + A1y,) and proceed in time. Here [|[U™ !5 := max; |U;L+1| denotes
Lo, norm of U over x grids. If the error is greater than the TOL, then A7,
is halved, and then w(z;, 7, + A7,) is computed again in two different ways
as above. This procedure is repeated until the error becomes smaller than the
tolerance. If, on the other hand, the error defined above is within the tolerance,
the next time step is changed by

(14) ATpy1 = A7, (1 4 clogg 1/E™),

where ¢ > 0 is a problem independent constant. The log function prevents
the step size from increasing too fast for a very small error. The algorithm is
simple and controls the time step size adaptively. In the numerical examples
below, the constant ¢ = 0.0025 and the error tolerance TOL = 107> are used.
The algorithm can be summarized as follows:

[Type I Adaptive Algorithm]

Step 0. Set up the parameters ¢ and TOL. Set n = 0 and choose
the initial time step size Ary.

Step 1. Solve the system (12) twice with A7, and A, /2 to obtain
Uf“ and (7}”1.

Step 2. Compute the error E™ in (13).

Step 3. If E™ >TOL, then A, is halved, and go to Step 1 to solve
the system again, otherwise go to Step 4.

Step 4. Save ﬁ;”rl, and set A7,41 by (14) and go to Step 1 by
increasing n by 1.

The Type II variable time step method consists of two pairs of uniform grids in
space and time. It uses constant Az, and A7y as step sizes for space and time,
respectively, for the first J steps in time. Then it uses another constant pair,
Axo and AT, for the remaining computation, as in Figure 2. For accuracy,
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we choose smaller grids for the initial J time steps, i.e., Ax; < Az and
AT < ATy,

time

space
F1GURE 2. Grids for the Type II variable time step method

The fully implicit scheme is used for the first J steps in time for both Type I
and II, and any #-method is used for the remaining time steps. In the numerical
tests, different numerical schemes have been applied to the numerical experi-
ments. When the uniform time step is used, the fully implicit scheme (IM) and
the combination of the fully implicit scheme and the Crank Nicolson method
(IM-CN) have been used. The tridiagonal systems from IM or IM-CN schemes
are solved by the Thomas algorithm [19]. When Type I or II variable time step
is used, (IM), (IM-CN), and the combination of the fully implicit scheme and
the explicit scheme (IM-EX) have been used. For the Type I variable time step
methods, A7 is initially chosen the same as those using uniform time step, then
it is allowed to change adaptively following the algorithm above. For the Type
IT variable time step methods in the examples below, the spatial and time grids
are related by

Ary = 4Ax1 and A1y = 4AT,

and ATy is the same as the step size of uniform method.

3.3. Free boundary problem

The prices of American options can be computed by solving the free bound-
ary problem in (10, 11). There have been developed several numerical methods
to solve the free boundary problems, see [3, 19]. In this work, since we focus
more on the time stepping method, we simply apply projection method at each
time step. For instance, we need to change the Step 1 of [Type I Adaptive
Algorithm] in Section 3.2 as follows:

Step 1’. Solve the system (12) twice with A7, and A7,/2 to ob-

~ an+l
tain U;H'l and U; . To satisfy the condition (11) for
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American case, we project the approximation to the pay-
off function, i.e.,

U;’H = max ([j}”l,max(K — xj, 0)) )
an+l

[7;‘+1 = max (Uj ,max(K — xj,O)) .

4. Numerical experiments

In this section, we compare Type I and II variable time stepping meth-
ods to uniform time stepping method. Different finite difference schemes ex-
plained above have been applied to the examples, European and American
vanilla/binary options. At each case we compute the approximation errors
between the exact values and numerically estimated values in L,.-norm,

(15) €= |[u(-,T) = UN||oo-

Computations are performed on Apple Imac computer with 2.4 GHz Intel Core
2 Duo processor and 2 GB RAM memory.

4.1. European vanilla option

Let us first consider the European vanilla option. We solve the initial value
problem (9) numerically and compare the results with the exact prices, for ex-
ample, see [2, 12, 6, 8, 19]. Table 1 shows parameters used for the computation.
The computation has been performed over the domain [Zmin, Tmax] X [0, T] =
[0, 80] x [0, 0.5].

TABLE 1. Parameters used for pricing the European vanilla option.

Type Put

Time to expiry (T') 6 months
Interest rate (r) 5%
Exercise price (K) 40
Volatility (o) 30%

Table 2 shows the numbers of time steps (N), the errors of option prices
(Eoption) 1n (15), and the errors of delta (Ea) and gamma (&) values, when
the combination of the fully implicit scheme and the Crank Nicolson method
(IM-CN) with uniform time step or variable time steps (Type I, II) are used.
From this table, Type I adaptive time step method results in as accurate prices
and Greeks as the uniform and Type II methods at much reduced costs. As M
increases, saving from Type I adaptive method increases. For instance, when
M = 640 is used, Type I need around 5 times less number of time steps than
the other methods.
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TABLE 2. The numbers of time steps (N) and the errors of
the option prices (Eoption), delta (Ea) and gamma (Er) for the
European vanilla put option based on the IM-CN method.

Uniform Type I Type 11

M| N Eopion éa & | N Eoption & & N Eoption éa &

20| 40 0.097425 0.007592 0.0018257 | 162 0.096339 0.0075372  0.0017939 52 0.03345 0.010706 0.0013013

40| 80 0.02348 0.0022545  0.00051243 | 226 0.023224  0.0022404  0.00050117 | 92 0.008561  0.0028823  0.00040162

80 | 160  0.0058541  0.0005725 0.00013373 | 262  0.0057913  0.0005674 ~ 0.0001307 | 172  0.0021933 0.00073165 0.00010158
160 | 320  0.0014612 0.00014446 3.3357e-05 | 269  0.0014426  0.00014289 3.2435e-05 | 332  0.00055256 0.00018406 2.5796e-05
320 | 640 0.00036535 3.6142e-05 270 0.00035821 3.5387e-05 7.9612e-06 | 652 0.00013874 4.6136e-05 6.4804e-06
640 | 1280  9.1327e-05  9.0428e-06 272 8.7059¢-05 8.5015e-06 1.8522e-06 | 1292 3.4774e-05 1.1541e-05 1.6248e-06

Figure 3 shows errors in option pricing with respect to the computational
time. Type IT (triangle) uses smaller grids for the first few steps in time com-
pared to uniform time step (solid line), thus CPU time is not altered much.
But, such a reduction of grids for a few initial steps improves the accuracy by
several times as in Table 2 or Figure 3. Figure 3 shows that Type II improves
the accuracy compared to uniform time step given the same computational
time. But, Type II does not change the slope of the curve. In case of Type
I (circle), the slope of the curve is steeper than those of the uniform or Type
IT time steps. Thus, when CPU time is small, Type II gives better accuracy.
But, as CPU time increases, Type I becomes more efficient than the others.

Error

0.

CPU
FIGURE 3. Errors in option pricing (Error) vs. the computa-
tional cost (CPU) for the European vanilla put option based

0.1 N & < — IM (Uniform)
N G-© IM (Typel)
VAN < A-A M (Typell)
AN o) S --- IM-CN (Uniform)
NN \\\ O-O IM-CN (Typel)
001 SA N A-A IM-CN (Typell)
< A\
p~
RN N
N
\& \c
0001 N \\\ N
< -0
Ty <A
AL \\\\
.0001 B 0]
0.001 0.01 0.1

on the IM-CN method.

4.2. European cash-or-nothing option

Type I and II algorithms are simple that they can be easily applicable to var-
ious exotic cases, such as binary options or American options. The European
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TABLE 3. Parameters used for pricing the cash-or-nothing option.

Type Call
Time to expiry (I') 6 months
Interest rate () 5%
Exercise price (K) 40
Volatility (o) 30%

Cash rebate (A) 1.0

cash-or-nothing call option pays a predefined cash rebate A > 0 if the termi-
nal price of the underlying asset exceeds the exercise price K > 0. Table 3
shows parameters used for the computation for the cash-or-nothing option.
The computation has been performed over the domain [Zmin, Tmax] X [0, T| =
[0, 80] x [0, 0.5].

Figure 4 shows errors in option prices vs. computational costs (CPU times)
based on the fully Implicit, or IM-CN method with uniform or variable time
stepping methods. We see the same trend as in the European vanilla option.
When Type II variable time step method is used, the accuracy is improved sev-
eral times compared to the uniform time step, but the slope is still not changed.
Though Type I variable time step method needs extra work to compute local
errors, Type I method is the most efficient under the same level of accuracy,
when the error tolerance is given sufficiently small.

N — IM (Uniform)

N\ GO IM (Typel)
NN 5 A-AIM (Typell)
NG X --- IM-CN (Uniform)
N QO -O IM-CN (Typel)
NN A-A IM-CN (Typell)

0.001 N

0.0001

TN ]

1e05 \A\A o

Error

1606 \\ b

0.001 0.01 01
CPU
FIGURE 4. Errors in option pricing (Error) vs. computational

cost (CPU) for the cash-or-nothing option from various
schemes.
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4.3. American cash-or-nothing option

Variable time step methods can be easily extended to American options
based on the projection method in Section 3.3. Let us consider American cash-
or-noting put option with uniform or variable time steps. Unlike the European
options, the American options can be exercised at any time before the expiry.
The same parameters as Table 3 are used except the type of the option. The
computational domain i [Zmin, Tmax] X [0, T] = [0, 160] x [0, 1]. Since the
exact option price is not available, the values from the fully Implicit method
with M = 10240 uniform steps are used as the benchmark values. Hybrid
finite difference schemes with variable time steps all work very well. Accuracy
and computational cost are important factors in option pricing, especially in
American options. The results show that variable time steps reduce the com-
putational time over the uniform step. That is, variable time step methods use
fewer time steps, and they give comparable accuracy. Figure 5 shows errors vs.
computational costs for the American cash-or-noting put option. Similarly to
results from Figure 3 and Figure 4, values from the variable time step methods
converge faster than those using uniform time steps.

0.1} "
— IM (Uniform)
G-© IM (Typel)
RS A-AIM (Typell)
N --- IM-CN (Uniform)
0.01 3 G-O IM-CN (Typel)
SKE N A=A IM-CN (Typell)
R <
N SR N
& SO Q.
I 0,001 2
e
AL TN = D
0.0001 . e
X Y
S > ~ > )
1e:05 AN ©

0.1 1 10

CcPU
FIGURE 5. Errors in option pricing (Error) vs. computational
cost (CPU) for the American cash-or-nothing put option based
on IM and IM-CN methods.

5. Conclusion

A new adaptive time-stepping hybrid finite difference method (Type I) and
a method with the combination of two uniform meshes (Type II) are proposed
to solve the Black-Scholes partial differential equation with a payoff containing
discontinuities. The time step sizes of Type I are adaptively chosen by the
control of local errors. Numerical experiments show that the new adaptive
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Type I method is much more efficient than Type II and the method with
uniform time steps. Type II improves the accuracy by several times over the
uniform time step methods. Studies of these methods together with space
adaptivity in higher dimensions with more complicated payoff will be subject
of future research.
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