• Title/Summary/Keyword: Dielectric resistance

Search Result 330, Processing Time 0.031 seconds

Influence of the Insulating Properties on Charge Injection Phenomena of Biaxially-Drawn Polypropylene Film (이축 연신된 폴리프로필렌 필름의 전하주입 현상이 절연특성에 미치는 영향)

  • 이준웅;김병태;박승협
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.1 no.2
    • /
    • pp.74-81
    • /
    • 1987
  • The reduction in dielectric strength of insulating polymer material when applying electric field is known to be substantial due to the trapped carrier effect. In this study, the carrier property of Biaxially-Drawn polypropylene, which has superior heat-resistance compared to ordinary one, is examined to improve electrical characteristics by measuring TSC spectra as a function of electric field applied to a sample of ($50{\mu}m$) thickness film. The TSC spectra in the temperature range of 303-413(K) and electric field of 2-80(MV/m) have shown no observable effect below 12(MV 1m) but TSC currents of Hetero-and Homo-peaks formed from trapped space charger and space charger injected from electrode have been observed above that point, which seems eventually lead to dielectric breakdown. Finally, this study has shown the superior dielectric proporty of Biaxially-Drawn polypropylene film compared to the non-oriented one for electrical insulation.

  • PDF

THE EFFECTS OF SEALING ON THE PLASMA-SPRAYED OXIDE-BASED COATINGS

  • Kim, Hyung-Jun;Sidoine Odoul;Kweon, Young-Gak
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.53-58
    • /
    • 2002
  • Electrical insulation and mechanical properties of the plasma sprayed oxide ceramic coatings were studied before and after the sealing treatment of the ceramic coatings. Plasma sprayed A1$_2$O$_3$-TiO$_2$ coating as the reference coating was sealed using three commercial sealants based on polymer. Penetration depth of the sealants to the ceramic coating was evaluated directly from the optical microscope using a fluorescent dye. It is estimated that the penetration depth of the sealants to the ceramic coating is from 0.2 to 0.5 mm depending on the sealants used. The preliminary test results with a DC puncture tester imply that the dielectric breakdown voltage mechanism of plasma sprayed ceramic coatings has been determined to be a corona mechanism. Dielectric breakdown voltage of the as-sprayed and as-ground samples have shown a linear trend with regard to the thickness showing an average dielectric strength of 20 kV/mm for the thickness scale studied. It is also shown that grinding the coating before sealing and adding fluorescent dye do not agent the penetration depth of sealants. All of the microhardness, two-body abrasive wear resistance, bond strength, and surface roughness of the ceramic coating after the sealing treatment are improved. The extent of improvement is different from the sealants used. However, three-point bending stress of the ceramic coating after the sealing treatment is decreased. This is attributed to the reduced micro-crack toughening effect since the cracks propagate easily through the lamellar of the coating without crack deflection and/or branching after the sealing treatment.

  • PDF

Property Comparison of Ru-Zr Alloy Metal Gate Electrode on ZrO2 and SiO2 (ZrO2와 SiO2 절연막에 따른 Ru-Zr 금속 게이트 전극의 특성 비교)

  • Seo, Hyun-Sang;Lee, Jeong-Min;Son, Ki-Min;Hong, Shin-Nam;Lee, In-Gyu;Song, Yo-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.808-812
    • /
    • 2006
  • In this dissertation, Ru-Zr metal gate electrode deposited on two kinds of dielectric were formed for MOS capacitor. Sample co-sputtering method was used as a alloy deposition method. Various atomic composition was achieved when metal film was deposited by controlling sputtering power. To study the characteristics of metal gate electrode, C-V(capacitance-voltage) and I-V(current-voltage) measurements were performed. Work function and equivalent oxide thickness were extracted from C-V curves by using NCSU(North Carolina State University) quantum model. After the annealing at various temperature, thermal/chemical stability was verified by measuring the variation of effective oxide thickness and work function. This dissertation verified that Ru-Zr gate electrodes deposited on $SiO_{2}\;and\;ZrO_{2}$ have compatible work functions for NMOS at the specified atomic composition and this metal alloys are thermally stable. Ru-Zr metal gate electrode deposited on $SiO_{2}\;and\;ZrO_{2}$ exhibit low sheet resistance and this values were varied with temperature. Metal alloy deposited on two kinds of dielectric proposed in this dissertation will be used in company with high-k dielectric replacing polysilicon and will lead improvement of CMOS properties.

The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer (절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지)

  • Do, Kyeom-Seon;Park, Seok-Gi;Myoung, Jae-Min;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

Electromagnetic Wave Absorption Properties of Fe-based Nanocrystalline P/M sheets with Al2O3 additive (Al2O3 첨가에 따른 Fe계 나노결정립 P/M시트의 전자파 흡수특성)

  • Woo, S.J.;Cho, E.K.;Cho, H.J.;Lee, J.J.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric $Al_{2}O_{3}$ powders and binders. As a result, the addition of $Al_{2}O_{3}$ powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% $Al_{2}O_{3}$ powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder.

Effects of Seawater & Freshwater Soaking on the Cure Properties of Accelerated Thermally Aged CSPE (가속열화 된 CSPE의 경화특성에 미치는 해수 담수 침지의 영향)

  • Shin, Yong-Deok;Lee, Jeong-U
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.819-824
    • /
    • 2016
  • The accelerated thermal aging of CSPE (chlorosulfonated polyethylene) was carried out for 33.64 and 67.27 days at 110[$^{\circ}C$], equivalent to 40 and 80 years of aging at 50[$^{\circ}C$], respectively. These samples were referred to as CSPE-0y, CSPE-40y and CSPE-80y, respectively. As the accelerated thermally aged years of the CSPE increase, the insulation resistance[$\Omega$] at 20[Hz], 500[Hz], and 2[KHz], and the percent elongation [%EL] of the CSPE decrease. However, the dissipation factor($tan{\delta}$) at 20[Hz], 500[Hz], and 2[KHz], the apparent density[$g/cm^3$], the glass transition temperature and the melting temperature of the CSPE were increased. The period of time that the voltage has to be applied until electric breakdown of the CSPE-0y is longer than that of the CSPE-40y, and the CSPE-80y, but the dielectric strength of the CSPE-80y is lower than that of the CSPE-0y and the CSPE-40y. The differential temperatures after the AC and DC voltages are applied to CSPE-0y, CSPE-40y and CSPE-80y are 0.026~0.028[$^{\circ}C$], 0.030~0.042[$^{\circ}C$], 0.018~0.045[$^{\circ}C$], respectively. The variations of temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE-0y, CSPE-40y and CSPE-80y. It is found that the dielectric loss owing to the dissipation factor[$tan{\delta}$] is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the separation of the branch chain of CSPE polymer from the main chain of the polyethylene as a result of thermal stress due to accelerated thermal aging as well as by conducting ions such as $Na^+$, $Cl^-$, $Mg^{2+}$, $SO_4^{2-}$, $Ca^{2+}$ and $K^+$ after seawater soaking.

Effects of ZrO2 Addition on Mechanical Strength and Thermal Shock Resistance of Cordierite-Mullite Ceramics (ZrO2가 코디어라이트-뮬라이트 세라믹스의 기계적 강도 및 내열충격성에 미치는 영향)

  • Lim, Jin-Hyeon;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dae-yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.719-724
    • /
    • 2018
  • Cordierite composed of an alumina-silica-magnesia compound has a low coefficient of thermal expansion(CTE) and excellent thermal shock resistance. It also has a low dielectric constant and high electrical insulation. However, due to low mechanical strength, it is limited for use in a ceramic heater. In this study, $ZrO_2$ is added to an 80 wt% cordierite-20 wt% mullite composition, and the effect of $ZrO_2$ addition on the mechanical strength and thermal shock resistance is investigated. With an increasing addition of $ZrO_2$, cordierite-mullite formed $ZrO_2$, $ZrSiO_4$ and spinel phases. With sintering conducted at $1400^{\circ}C$ with the addition of 5 wt% $ZrO_2$ to 80 wt% cordierite-20 wt% mullite, the most dense microstructure forms along with an excellent mechanical strength with a 3-point flexural strength of 238MPa. When this composition is quenched in water at ${\Delta}T=400^{\circ}C$, the 3-point flexural strength is maintained. Moreover, when this composition is cooled from $800^{\circ}C$ to air, the 3-point flexural strength is maintained even after 100 cycles. In addition, the CTE is measured as $3.00{\times}10^{-6}{\cdot}K^{-1}$ at $1000^{\circ}C$. Therefore, 80 wt% cordierite-20 wt% mullite with 5 wt% $ZrO_2$ is considered to be appropriate as material for a ceramic heater.

Properties of double-layered anodizing films on Al alloys formed by two consecutive anodizings (알루미늄 합금의 연속식 양극산화법으로 형성시킨 이중 산화막층의 특성)

  • Jeong, Nagyeom;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.30-36
    • /
    • 2021
  • In this study, double-layered anodizing films were formed on Al 5052 and Al 6061 alloys consecutively first in sulfuric acid and then in oxalic acid, and hardness, withstand voltage, surface roughness and acid resistance of the anodizing films were compared with single-layered anodizing films in sulfuric acid and oxalic acid electrolytes. Hardness of the double-layered anodizing film decreased with increasing ratio of inner layer to outer layer for both Al 5052 and Al 6061 alloys, suggesting that outer anodizing film formed in sulfuric acid electrolyte is damaged during the second anodizing in oxalic acid electrolyte. Withstand voltage of the double-layered anodizing films increased with increasing the thickness ratio of inner layer to outer layer. Surface roughness of the double-layered anodizing films were comparable with that of single-layered anodizing film formed in sulfuric acid but higher than that of single layer anodizing film formed in oxalic acid electrolyte. In acid resistance test, all of the double-layered and single-layered anodizing films showed good acid resistance more than 3 h without any visible gas evolution, which is attributable to sealing of pores. Based on the experimental results obtained in this work, it is possible to design a double-layered anodizing film with cost-effectiveness and improved physical and electrical properties by combining two consecutive anodizing processes of sulfuric acid anodizing and oxalic acid anodizing methods.

Characterization of Fracture Toughness and Wear Behavior for Plasma Ceramic Coated Materials (플라즈마 코팅재료의 파괴인성과 마모 거동)

  • Ha, Sun-Ho;Lee, Dong-Woo;Rehman, Atta Ur;Wasy, Abdul;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.123-130
    • /
    • 2013
  • Zirconia is well known in industrial applications for its mechanical characteristics. DLC (diamond-like carbon) have high elastic modulus, high electric resistivity, high dielectric constant, high wear resistance, low friction coefficient, bio compatibility, chemically inert and thermally stable. Because of all these physical and chemical properties these types of coatings have become key procedure for thin coating. Friction coefficient of DLC films is already evaluated and the current work is a further advancement by calculating the fracture toughness and wear resistance of these coatings. In the present study DLC thin film coatings are developed on $ZrO_2$ alloy surface using Plasma Enhanced Chemical Vapor Deposition (PECVD) method. Vicker hardness test is employed and it was concluded that, DLC coatings increase the Vickers hardness of ceramics.

Synthesis and characterization of silicone-containing polyamideimide and its gas separation

  • 이용범;심진기;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.83-84
    • /
    • 1997
  • 1. INTRODUCTION : Polyimides containing siloxane moiety(poly(imide siloxane), or polysiloxaneimide) have been synthesized because of their some merits over polyimide itseft. Polyimides have excellent thermal and mechanical properties but their poor solubility and processibility in their fullly imidized form give disadvantages in applications. Incorporation of siloxane units make it possible to increase solubility and processibility, and also impart impact resistance, low moisture uptake, low dielectric constant, thermo-oxidative resistance, good adhesion properties to substrate and etc.. Incorporation methods of siloxane groups into the polyimide was mainly copolymerization or terpolymerization between oligomeric dimethylsiloxane and aromatic dianhydride. A few methods of introducing siloxane units in functional groups of polyimide was reported. In our laboratory poly(amideimide siloxane) and poly(imide siloxane) were prepared and the study about their thermal kinetics was performed. In separation membrane area, polysiloxaneimides was utilized in pervaporation and gas separation. Polyimides in gas separation show high selectivity and very low permeability, and introduction of siloxane segments increase permeability with low decrease in selectivity. We aimed to introduce silicone segments into poly(amic acid) state and synthesize polymer partially imidized, and also show the gas separation characteristics of the synthesized polymer.

  • PDF