• Title/Summary/Keyword: Device-to-Device (D2D) communication

Search Result 293, Processing Time 0.028 seconds

Visible Wavelength Photonic Insulator for Enhancing LED Light Emission

  • Ryoo, Kwangki;Lee, Jeong Bong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • We report design and simulation of a two-dimensional (2D) silicon-based nanophotonic crystal as an optical insulator to enhance the light emission efficiency of light-emitting diodes (LEDs). The device was designed in a manner that a triangular array silicon photonic crystal light insulator has a square trench in the middle where LED can be placed. By varying the normalized radius in the range of 0.3-0.5 using plane wave expansion method (PWEM), we found that the normalized radius of 0.45 creates a large band gap for transverse electric (TE) polarization. Subsequently a series of light propagation simulation were carried out using 2D and three-dimensional (3D) finite-difference time-domain (FDTD). The designed silicon-based light insulator device shows optical characteristics of a region in which light propagation was forbidden in the horizontal plane for TE light with most of the visible light spectrum in the wavelength range of 450 nm to 600 nm.

3GPP LTE-Assisted Wi-Fi-Direct: Trial Implementation of Live D2D Technology

  • Pyattaev, Alexander;Hosek, Jiri;Johnsson, Kerstin;Krkos, Radko;Gerasimenko, Mikhail;Masek, Pavel;Ometov, Aleksandr;Andreev, Sergey;Sedy, Jakub;Novotny, Vit;Koucheryavy, Yevgeni
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.877-887
    • /
    • 2015
  • This paper is a first-hand summary on our comprehensive live trial of cellular-assisted device-to-device (D2D) communications currently being ratified by the standards community for next-generation mobile broadband networks. In our test implementation, we employ a full-featured 3GPP LTE network deployment and augment it with all necessary support to provide realtime D2D connectivity over emerging Wi-Fi-Direct (WFD) technology. As a result, our LTE-assisted WFD D2D system enjoys the required flexibility while meeting the existing standards in every feasible detail. Further, this paper provides an account on the extensive measurement campaign conducted with our implementation. The resulting real-world measurements from this campaign quantify the numerical effects of D2D functionality on the resultant system performance. Consequently, they shed light on the general applicability of LTE-assisted WFD solutions and associated operational ranges.

An Approach to implement Virtual 3D-Touch using 2D-Touch based Smart Device through User Force Input Behavior Pattern (2D-Touch 스마트 디바이스에서 사용자 행동 패턴 분석을 통한 가상 3D-Touch 구현을 위한 방법)

  • Nam, ChoonSung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.41-51
    • /
    • 2016
  • The appearance of 3D-Touch interface provided the basis of a new interaction method between the users and the mob ile interface. However, only a few smartphones provide 3D-Touch features, and most of the 2D-Touch devices does not provide any means of applying the 3D-Touch interactions. This results in different user experiences between the two interaction methods. Thus, this research proposes the Virtual Force Touch method, which allows the users to utilize the 3D-Touch Interface on 2D-Touch based smart devices. This paper propose the suitable virtual force touch mechanism that is possible to realize users' inputs by calculating and analysis the force touch area of users' finger. This proposal is designed on customized smartphone device which has 2D-Touch sensors.

Access Control for D2D Systems in 5G Wireless Networks

  • Kim, Seog-Gyu;Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.103-110
    • /
    • 2021
  • In this paper, we compare two access control mechanisms for D2D(Device-to-Device) systems in 5G wireless networks and propose an effective access control for 5G D2D networks. Currently, there is no specified access control for 5G D2D networks but there can be two access control approaches for 5G D2D networks. One is the UE-to-Network Relay based access control and the other is the Remote UE(User Equipment) based access control. The former is a UE-to-Network Relay carries out the access control check for 5G D2D networks but the latter is a Remote UE performs the access control check for 5G D2D networks. Through simulation and evaluation, we finally propose the Remote UE based access control for D2D systems in 5G wireless networks. The proposed approach minimizes signalling overhead between the UE-to-Network Relay and the Remote UE and more efficiently performs the access control check, when the access control functionalities are different from the UE-to-Network Relay in 5G D2D networks.

Large-scale 3D fast Fourier transform computation on a GPU

  • Jaehong Lee;Duksu Kim
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1035-1045
    • /
    • 2023
  • We propose a novel graphics processing unit (GPU) algorithm that can handle a large-scale 3D fast Fourier transform (i.e., 3D-FFT) problem whose data size is larger than the GPU's memory. A 1D FFT-based 3D-FFT computational approach is used to solve the limited device memory issue. Moreover, to reduce the communication overhead between the CPU and GPU, we propose a 3D data-transposition method that converts the target 1D vector into a contiguous memory layout and improves data transfer efficiency. The transposed data are communicated between the host and device memories efficiently through the pinned buffer and multiple streams. We apply our method to various large-scale benchmarks and compare its performance with the state-of-the-art multicore CPU FFT library (i.e., fastest Fourier transform in the West [FFTW]) and a prior GPU-based 3D-FFT algorithm. Our method achieves a higher performance (up to 2.89 times) than FFTW; it yields more performance gaps as the data size increases. The performance of the prior GPU algorithm decreases considerably in massive-scale problems, whereas our method's performance is stable.

FBAR Device with Thin AlN Piezoelectric Film for 2 GHz RF Bandpass Filter Applications (2 GHz 대역 RF 대역통과 필터 응용을 위한 AlN 압전 박막을 이용한 FBAR 소자)

  • Giwan Yoon;Munhyuk Yim;Dongkyu Chai;Kim, Sanghee;Kim, Jongheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.250-254
    • /
    • 2003
  • A film bulk acoustic resonator (FBAR) device for 2 GHz radio frequency (RF) bandpass filter application is presented. This FBAR device consists of an aluminum nitride (AlN) film sandwiched between top(Al) and bottom(Au) electrodes and an acoustic multilayer reflector of a silicon dioxide/tungsten (SiO2/W). The A/N film deposited using a RF sputtering was observed to have small columnar grains with a strongly preferred orientation towards c axis. In addition to a high quality factor (4300), a large return loss of 37.19 dB was obtained.

Interference Aware Channel Assignment Algorithm for D2D Multicast Underlying Cellular Networks

  • Zhao, Liqun;Ren, Lingmei;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2648-2665
    • /
    • 2022
  • Device-to-device (D2D) multicast has become a promising technology to provide specific services within a small geographical region with a high data rate, low delay and low energy consumption. However, D2D multicast communications are allowed to reuse the same channels with cellular uplinks and result in mutual interference in a cell. In this paper, an intelligent channel assignment algorithm is designed in D2D underlaid cellular networks with the target of maximizing network throughput. We first model the channel assignment problem to be a throughput maximizing problem which is NP-hard. To solve the problem in a feasible way, a novel channel assignment algorithm is proposed. The key idea is to find the appropriate cellular communications and D2D multicast groups to share a channel without causing critical interference, i.e., finding a channel for a D2D multicast group which generates the least interference to network based on current channel assignment status. In order to show the efficacy and effectiveness of our proposed algorithm, a novel search algorithm is proposed to find the near-optimal solution as the baseline for comparisons. Simulation results show that the proposed algorithm improves the network throughput.

Performance Analysis of User Clustering Algorithms against User Density and Maximum Number of Relays for D2D Advertisement Dissemination (최대 전송횟수 제한 및 사용자 밀집도 변화에 따른 사용자 클러스터링 알고리즘 별 D2D 광고 확산 성능 분석)

  • Han, Seho;Kim, Junseon;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.721-727
    • /
    • 2016
  • In this paper, in order to resolve the problem of reduction for D2D (device to device) advertisement dissemination efficiency of conventional dissemination algorithms, we here propose several clustering algorithms (modified single linkage algorithm (MSL), K-means algorithm, and expectation maximization algorithm with Gaussian mixture model (EM)) based advertisement dissemination algorithms to improve advertisement dissemination efficiency in D2D communication networks. Target areas are clustered in several target groups by the proposed clustering algorithms. Then, D2D advertisements are consecutively distributed by using a routing algorithm based on the geographical distribution of the target areas and a relay selection algorithm based on the distance between D2D sender and D2D receiver. Via intensive MATLAB simulations, we analyze the performance excellency of the proposed algorithms with respect to maximum number of relay transmissions and D2D user density ratio in a target area and a non-target area.

Bi-directional Two Terminal Switching Device based on SiGe for Spin Transfer Torque (STT) MRAM

  • Yang, Hyung-Jun;Kil, Gyu-Hyun;Lee, Sung-Hyun;Song, Yun-Heub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.385-385
    • /
    • 2012
  • A two terminal N+/P/N+ junction device to replace the conventional selective transistor was studied as a bilateral switching device for spin transfer torque (STT) MRAM based on 3D device simulation. An N+/P/N+ junction structure with $30{\times}30nm$ area requires bi-directional current flow enough to write a data by a drain induced barrier lowering (DIBL) under a reverse bias at N+/P (or P/N+ junction), and high current on/off ratio of 106. The SiGe materials are widely used in hetero-junction bipolar transistors, bipolar compensation metal-oxide semiconductors (BiCMOS) since the band gap of SiGe materials can be controlled by changing the fraction and the strain epilayers, and the drift mobility is increased with the increasing Ge content. In this work, N+/P/N+ SiGe material based junction provides that drive current is increased from 40 to $130{\mu}A$ by increased Ge content from 10~80%. When Ge content is about 20%, the drive current density of SiGe device substantially increased to 2~3 times better than Si-based junction device in case of 28 nm P length, which is sufficient current to operation of STT-MRAM.

  • PDF

Performance Analysis of coverage probability according to transmission range of devices (단말의 통신 반경 변화에 따른 포함 확률 성능 분석)

  • Han, Seho;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1881-1886
    • /
    • 2016
  • In this paper, by using D2D communications that perform direct communications among devices within small transmission range of each device without base station, we assume that a device generates and transmits data packets to other proximate devices and the devices which receive the data packets relay those to other adjacent devices. To maximize the total number of devices which successfully receive data packets, Epidemic routing protocol is considered in this paper. In Epidemic routing protocol, all devices which received data packets try to relay the packets to other adjacent devices. We assume various network environment where devices are densely distributed in specific area(crowded area). In this environment, D2D SD can be a source node and D2D devices can be relay nodes. By setting transmission range of D2D SD and D2D devices as parameters, we analyze performance results of coverage probability of Epidemic routing protocol through intensive simulations.