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Abstract

We propose a novel graphics processing unit (GPU) algorithm that can handle

a large-scale 3D fast Fourier transform (i.e., 3D-FFT) problem whose data size

is larger than the GPU’s memory. A 1D FFT-based 3D-FFT computational

approach is used to solve the limited device memory issue. Moreover, to

reduce the communication overhead between the CPU and GPU, we propose

a 3D data-transposition method that converts the target 1D vector into a con-

tiguous memory layout and improves data transfer efficiency. The transposed

data are communicated between the host and device memories efficiently

through the pinned buffer and multiple streams. We apply our method to vari-

ous large-scale benchmarks and compare its performance with the state-of-

the-art multicore CPU FFT library (i.e., fastest Fourier transform in the West

[FFTW]) and a prior GPU-based 3D-FFT algorithm. Our method achieves a

higher performance (up to 2.89 times) than FFTW; it yields more performance

gaps as the data size increases. The performance of the prior GPU algorithm

decreases considerably in massive-scale problems, whereas our method’s per-
formance is stable.
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1 | INTRODUCTION

The Fourier transform is a mathematical tool that repre-
sents waves that vary in time and space in their fre-
quency domains. It has been extensively adopted to
analyze the patterns of composite waves [1]. The fast
Fourier transform (FFT) is a method used to accelerate
the estimation of the discrete Fourier transform (DFT)
(e.g., Cooley–Tukey algorithm), thus reducing the com-
putational cost from OðN2Þ to OðN logNÞ, where N is the
size of the relevant vector [2]. Most Fourier transform
libraries including fastest Fourier transform in the West

(FFTW) [3, 4] and OneAPI [5] are based on FFT algo-
rithms. One primary application of the FFT is convolu-
tion computation, which is a fundamental operation in
the computer vision and machine learning domains.
Based on the convolution theorem, the convolution oper-
ation can be represented as a set of FFT operations and
element-wise matrix multiplications, thereby reducing
the computational cost from OðN2Þ to OðNlogNÞ. For
example, we can significantly decrease the computational
time of the angular spectrum method (ASM) by calculat-
ing the wave propagation patterns of spatial fields using
the convolution theorem [6].

Received: 5 August 2022 Revised: 22 December 2022 Accepted: 27 December 2022

DOI: 10.4218/etrij.2022-0297

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2023 ETRI

ETRI Journal. 2023;45(6):1035–1045. wileyonlinelibrary.com/journal/etrij 1035

https://orcid.org/0000-0002-8311-5975
https://orcid.org/0000-0002-9075-3983
mailto:bluekds@koreatech.ac.kr
https://doi.org/10.4218/etrij.2022-0297
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2
http://crossmark.crossref.org/dialog/?doi=10.4218%2Fetrij.2022-0297&domain=pdf&date_stamp=2023-03-22


As the FFT process consists of a set of vectorial,
element-wise multiplications, and additions, it is a suit-
able operation for ASM computing units [7]. A graphics
processing unit (GPU) is a well-known computing device
with a single-instruction multiple-data (SIMD) architec-
ture, and recent GPUs have thousands of processing
cores. Therefore, GPUs have been actively employed in
many math libraries to accelerate the FFT process in soft-
ware programs, such as MATLAB [8], CUDA fast Fourier
transform [9], and OneAPI [5].

However, most FFT libraries need to load the entire
dataset into the GPU memory before performing compu-
tations, and the GPU memory size limits the FFT prob-
lem size that they can handle. Recent commodity GPUs
have limited memory space (in the range of 2 GB–24 GB
compared with the system memory), with sizes ranging
from tens of GB to several terabytes. Therefore, it is diffi-
cult to utilize the prior GPU-based FFT library for a
large-scale FFT problem that requires GPU’s high-
computing capability. To overcome the limited GPU
memory size issue, hybrid algorithms utilizing both a
central processing unit (CPU) and GPU for FFT compu-
tation have been proposed [10]. Hybrid algorithms
employ a divide-and-conquer strategy that splits the data
into smaller parts. Then, it sends the data (in smaller
parts) to the GPU for processing. Additionally, it places
the original input data into pinned (or page-locked)
memory, which is not paged by the operating system
[11], to minimize the data transfer overhead between the
CPU and GPU. However, we can only set a part of the
system memory as pinned memory. Therefore, the data
size that can be handled is still limited.

We propose a novel GPU-based three-dimensional
FFT (3D-FFT) algorithm that can handle large-scale
three-dimensional data exceeding the pinned-memory
size (Section 4). Our method allocates the pinned mem-
ory as fit to the GPU memory size and uses the pinned-
memory region as a buffer for communication between
the CPU and GPU (Section 4.1). To improve data com-
munication efficiency, we propose a 3D transposition
method to convert nonsequential data access to sequen-
tial access using multiple streams (Section 4.2). Finally,
we optimize our 3D-FFT algorithm by overlapping GPU
computations and data communication (Section 4.3).

To verify the benefits of our approach, we implemen-
ted our method on a system with an Nvidia RTX 3090
with 24 GB memory. We then tested the performance of
our 3D-FFT algorithm with a large-scale 3D complex data
problem, whose size was much larger than the GPU
memory size (Section 5). Compared with a state-of-the-
art multicore, CPU-based FFT library (i.e., FFTW), our
method achieved higher performance (up to 2.89 times).
In addition, we found that the performance gap increased

as the data size increased. We also implemented the
state-of-the-art GPU-based 3D-FFT algorithm (i.e., Chen)
[10] and compared its performance with that of our
method. Chen performs better than our method for
small-scale data (e.g., 16 GB). However, our algorithm
achieved comparable performance to that of Chen for
large-scale benchmarks (e.g., 32 GB–64 GB). Specifically,
for massive-scale data (e.g., 128 GB), the performance of
Chen decreased significantly, whereas our method
worked stably for the same data. As a result, our method
achieved higher performance than Chen for massive-scale
data (up to 8.78 times). These results validate the effi-
ciency of our method and show that our 3D-FFT algo-
rithm is appropriate for large-scale 3D-FFT problems.

2 | RELATED WORK

Various parallel algorithms have been proposed that
employ various types of parallel computing resources,
including field-programmable gate arrays (FPGAs)
[12, 13], multicore CPUs [4, 5, 14], and GPUs [9, 15–17].

The multicore CPU has traditionally been one of the
most extensively adopted hardware for FFT computa-
tions. The FFTW [4] is a state-of-the-art FFT library that
runs on a multicore CPU. The Math Kernel Library
(MKL) [5] also supports high-performance FFT computa-
tion on Intel’s CPU. Khokhriakov and others [14] pro-
posed an optimized two-dimensional (2D)-FFT algorithm
using these libraries and achieved performance improve-
ments of up to 9.4 times with multicore CPUs compared
with single-core CPUs. Most modern computing systems
have one or more multicore CPUs. Generality is one of
the main advantages of multicore CPU-based FFT algo-
rithms. However, from the perspective of performance,
using an accelerator (e.g., an FPGA or GPU) yields a con-
siderably improved performance.

Recently, the GPU has also been actively employed to
accelerate FFT computations. cuFFT [9] is a state-of-the-
art GPU-based FFT library. Typically, it achieves much
higher performance than CPU-based libraries. AMD also
released the rocFFT library that runs on the Radeon
Open Computing Platform (ROCm) [18]. Hu and others
[19] optimized the memory-access pattern for FFT com-
putations on ROCm. The proposed implementation
achieved speed enhancements ranging from 25% to 250%
compared with the speed of rocFFT.

However, GPU-based FFT libraries can handle prob-
lem sizes that are much smaller than CPU-based algo-
rithms using the system memory because the size of the
device memory (e.g., 2 GB–24 GB) is typically much
smaller than the system memory (e.g., 16 GB to 1 TB).
Gu and others [16] solved this issue using the
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Cooley–Turkey algorithm [2]. These researchers reduced
the size of the work unit that a GPU could process at a
specific time period by decomposing the 1D-FFT problem
into a set of sub-FFT problems using the Cooley–Tukey
algorithm. They also decomposed multidimensional FFT
problems into multidimensional sub-FFT problems and
gathered the subarrays in contiguous memory space for
efficient data transfer. As a result, they achieved perfor-
mance improvements up to 2.3 and 1.53 times compared
with CPU-based algorithms for 2D-FFT and 3D-FFT
problems, respectively, in cases wherein problem sizes
were larger than the device memory.

Modern Nvidia’s GPUs include tensor cores—spe-
cial-purpose processing units for four-by-four matrix-
multiply-and-accumulate. Usually, they are employed to
accelerate deep-learning processes, but recent studies
have attempted to utilize the tensor core for FFT com-
putations [20–23]. Sorna and others [23] divided an
input vector into multiple vectors such that the length
of each vector was equal to four. Four-by-four matrices
were constructed, and FFT was executed with tensor
cores. They also decreased the precision error associated
with the four-by-four matrix-based FFT by combining
two half-precision numbers into a single-precision num-
ber. Although they succeeded in using a tensor core for
FFT computations, their performance was lower than
that achieved using the cuFFT library. Durrani and
others [20], Li and others [21], and Pisha and Ligowski
[22] presented tensor-core-based FFT methods and
achieved improved performance compared with those
achieved using the cuFFT library. However, these
approaches have several limitations on the precision
[21] or the supported vector size [20, 22]. Therefore,
using standard GPU cores is a more general solution.

Ogata and others [24] proposed a hybrid approach
using both a CPU and GPU for 2D-FFT computations.
They decomposed the 2D-FFT computation into a set of
1D-FFTs and distributed the FFT problems to the CPU
and GPU. Additionally, to decrease the overhead for data
transfer between the host and device memories, they per-
formed matrix transposition before sending data. Chen
and Li [10] extended the approach of Gu and others [16]
and used both a GPU and CPU for FFT computations,
similar to Ogata and others [24]. Unlike Gu and others
[16], they used a 2D data-copy application programming
interface (API) instead of gathering multiple subarrays
before sending them to transfer multidimensional data.

Similar to Ogata and others [24], we also employed
1D-FFT-based, high-dimensional FFT computations and
used the data-transposition approach to achieve efficient
data communication between the CPU and GPU. How-
ever, we handled 3D-FFT problems instead of 2D-FFT. In
addition, we propose a data-transposition method for 3D
data that depends on the target dimensions.

The data communication medium between the sys-
tem and device memories is the peripheral component
interconnect express (PCIe). Most prior studies used
pinned (or page-locked) memory regions to maximize the
bandwidth of PCIe. However, only part of the system can
be a page-locked region, which limits the problem size
that previous algorithms could treat. Lee and others
[25] proposed a pinned-memory buffer approach to
handle large-scale data that exceeded the maximum
size of the page-locked memory. Instead of managing
the entire input data in the pinned-memory space,
they constructed small-sized pinned-memory buffers
were constructed. Subsequently, only the target work
unit (e.g., rows or columns) was placed in the pinned
buffer for data communication between the CPU and
GPU. This pinned-memory buffer approach requires
additional data transposition and data-copy overheads.
The authors of this study found that the benefit of
using pinned-memory buffers was considerable com-
pared with that associated with overhead. As a result,
they successfully handled a large-scale 2D-FFT prob-
lem, which could not be handled by the prior
approach, and achieved improved performance (up to
3.24 times) than the conventional implementation
(which did not use pinned-memory buffers).

We employed the pinned buffer concept of Lee and
others [25] and adapted it to 3D-FFT problem. We also
present a novel data rearrangement (transposition) method
for the 3D-FFT case to efficiently utilize the pinned buffer.

Distributed computing environments are suitable can-
didates for handling large-scale FFT problems [26, 27].
Excellent analyses based on recent studies are available
[28, 29]. The primary issue in a distributed system is the
data commutation overhead on distributed memory.
Cayrols and others [30] proposed a data compression
approach to reduce the communication overhead. How-
ever, there is a trade-off between the accuracy and com-
puting performance for 3D-FFT. Unlike distributed FFT
algorithms, we focused on optimizing the processing
speed of 3D-FFT on a GPU node.

3 | PRELIMINARIES

In this section, we first define a 3D FFT operation. We
then introduce GPU-based computational characteristics
that are required to understand the proposed method.

3.1 | 3D-FFT

3D-FFT is represented by (1), where Fðf x , f y, f zÞ is the
distribution of the Fourier domain and f ðx, y, zÞ is the
3D input data.
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Fðf x , f y, f zÞ¼
PNx�1

x¼0

PNy�1

y¼0

PNz�1

z¼0
f ðx, y, zÞexp �2πi

xf x
Nx

þ yf y
Ny

þ zf z
Nz

� �� �
:
ð1Þ

x,y, and z are indices of the input signal, and f x , f y, and
f z are indices of the Fourier domain. Nx , Ny, and Nz are
the sizes of each dimension of the signal, and i is

ffiffiffiffiffiffiffi�1
p

.
In (1), expð�2πiðxf xNx

þ yf y
Ny
þ zf z

Nz
ÞÞ is the twiddle factor,

which can be decomposed in each dimension. For exam-
ple, the twiddle factor of the X-coordinate is
expðxf x=NxÞ. Based on this property, we can represent
the 3D-FFT as a set of 1D-FFT for each dimension.

As the 1D-FFT-based, high-dimensional FFT can
handle each dimension separately, it requires consider-
ably less memory than handling all data simultaneously.
Therefore, this approach facilitates the use of systems
with limited memory space. In this study, we employed
1D-FFT to perform 3D-FFT computations to efficiently
utilize GPUs that have limited device memory.

3.2 | Characteristics of GPU
computation

To utilize GPU for computations, the input data must first
be copied to the GPU memory (i.e., device memory). Typi-
cally, the PCIe communication interface is used, and the
bandwidth of PCIe (e.g., 31.75 GB/s) is lower than the
bandwidths of the system memory (e.g., 95.37 GB/s) and
device memory (e.g., 936.2 GB/s). Therefore, frequent
communication between the host and device is a perfor-
mance bottleneck in a GPU algorithm. Additionally, to
maximally utilize the PCIe bandwidth, a pinned-memory
(i.e., page-locked) region must be used, which is guaran-
teed to not be swapped-out by the operating system.

However, we could only set a part of the system mem-
ory as a pinned-memory region, and it is difficult to place
the entire large-scale data into the pinned memory.

In our method, we constructed fixed and small-sized
buffers in the pinned-memory region to handle a large-
scale 3D-FFT problem with GPU efficiently (Section 4.2).

GPU and CPU are independent processing units that
can run asynchronously. In addition, data copies between
two devices can be performed during the time the devices
perform computations. Such concurrent execution can be
realized by pipelining computation and data communica-
tion through multiple streams, which is a medium for
issuing tasks to the GPU. The concurrent execution of
computation and data transfer is a well-known strategy
for hiding data communication overhead. We employ
this approach in our method.

4 | GPU-BASED 3D-FFT
ALGORITHM

4.1 | Algorithm overview

To handle a large-scale 3D-FFT problem with limited
device memory space, we employed the 1D-FFT-based
3D-FFT calculation approach (Section 3.1). This implies
that our method performs 1D-FFTs for each dimension.
Note that the processing order of the dimensional data
did not affect the final 3D-FFT result. The basic work
unit of 1D-FFT is a line along a specific dimension (such
as a matrix row or column). Figure 1 shows an overview
of the proposed GPU-based 3D-FFT algorithm that pro-
cesses each 1D vector (i.e., line) in five steps.

The first step is data transposition (i.e., Transpose).
The Y - and Z-dimensional data are generally noncontin-
uous in the system memory, according to (2).

Indexðx, y, zÞ¼ zNxNyþ yNx þ x: ð2Þ

As nonsequential data access is slower than sequen-
tial access, 1D-FFT computations for the Y and Z
dimensions become a performance bottleneck. For the Y
and Z dimensions, we transposed the 1D vectors in a con-
tinuous memory form to improve the processing effi-
ciency. The transposed data were then placed into the
pinned buffer, and a small pinned-memory space was
used to send the data to the GPU (Section 4.2). As
X-dimensional data are continuously placed in the

F I GURE 1 Process overview of the

proposed 3D-FFT algorithm.
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memory, the pinned buffer is copied, thus bypassing the
transposition step.

The second step is data copying from the host and
device memories (i.e., TransferHtoD). This step transfers
the data in the pinned buffer to the GPU’s device mem-
ory. Once the data are transferred to the device memory,
GPU performs 1D-FFT operations (i.e., the 1D-FFT step).
After the 1D-FFT computation is completed, the results
are transferred from the device memory to the pinned
buffer on the host memory, which is the fourth step,
commonly referred to as TransferDtoH. The last step is
inverse transposition (i.e., iTranspose). This step trans-
poses the result vector in the pinned buffer in the reverse
manner of the first step and places the results in the origi-
nal memory space of the data.

Basic work unit: As the data size increases, the data
transfer efficiency improves. Additionally, to utilize the
GPU’s massive parallelism capability to the maximum
extent, many data need to be processed simultaneously
[10, 11]. To achieve a high efficiency in data transfer and
computation, we constructed a set of 1D datasets (rows
or columns) in the form of a data part that constituted
the basic work unit of our algorithm. We also handled
multiple parts (e.g., four parts) simultaneously, using dif-
ferent streams. Given that tasks in different streams can
overlap (e.g., data transfer and computation on GPU), we
can hide the data communication overhead while
improving GPU’s utilization.

4.2 | Data transposition and generation
of data parts

Figure 2 shows the memory layout of 3D data. Unlike the
X-dimensional data allocated continuously, the Y - and
Z-dimensional data were placed discontinuously and
strided. This discontinuous data layout leads to nonse-
quential memory access and lowers the cache utilization
efficiency (e.g., hit ratio) while requiring more data
access latency than sequential memory access. Addition-
ally, continuous data can be handled with a single data-
copy API for communication between the CPU and GPU.
However, data with a discontinuous layout require multi-
ple API calls, thereby decreasing the data transfer effi-
ciency (e.g., the time required per data element).

To improve the data transfer efficiency, we gathered
data of the target dimension into a contiguous memory
space (i.e., pinned buffer) by data transposition. For a
Y -dimensional vector, the distance in memory between
two neighboring elements is the length of the X dimen-
sion (i.e., Nx). Furthermore, there is a finite space equal
to Nx �Ny between two neighboring elements in the case
of a Z-dimensional vector. Equations (3) and (4) are the
equations for calculating the transposed positions of

element ðx, y, zÞ along the Y and Z dimensions, respec-
tively, where ðx0, y0, z0Þ is the index of the first element of
the data part of the 3D data.

Transyðx,y,zÞ¼ ðz� z0ÞNxNyþðx�x0ÞNyþy, ð3Þ

Transzðx,y,zÞ¼ ðy�y0ÞNxNzþðx�x0ÞNzþ z: ð4Þ

The target data part was copied into the pinned buffer
and rearranged using transposition equations. These
were then transferred to the device memory for 1D-FFT
computations. Moreover, after 1D-FFT computations,
GPU returned the result to the pinned buffer. Note that
the data communication between the pinned buffer and
device memory required only a data-copy API call, as we
placed them in a continuous memory space.

We need to write the 1D-FFT results must be writ-
ten to the original data region for subsequent 1D-FFT
processes (e.g., 1D-FFTs for other dimensions). This
requires another data-transposition step in the inverse
direction with respect to the direction of the first
transposition. Equations (5) and (6) present the inverse
transposition equations for the Y and Z dimensions,
respectively.

iTransyðxb, yb, zbÞ¼ ðzbþ z0ÞNxNyþ xbNx þðybþ x0Þ, ð5Þ

iTranszðxb, yb, zbÞ¼ xbNxNyþðzbþy0ÞNxþðybþx0Þ: ð6Þ

In (5) and (6), ðxb, yb, zbÞ is the data index in the
pinned buffer. Although our approach requires additional
transposition steps before and after processing each part,
we found that the advantage of data transposition on data

F I GURE 2 The shape of 3D data in memory and data-

transposition example for each dimension.
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communication efficiency outweighs the overhead.
For example, for a vector with a size of 2048 in the
Z dimension, the time required to copy the vector with
two data-transposition steps (time of transpositions and
data transfer) is approximately 56% of the time required
to send data without transposition.

4.3 | Optimization with multiple
streams

The CPU and GPU are independent computing units, as
explained in Section 3.2. It is possible to run multiple
operations (e.g., computations in each computing unit
and data communication) in different streams asynchro-
nously and concurrently.

To minimize the data transfer overhead and maxi-
mize GPU’s utilization efficiency, we constructed multi-
ple streams and allocated data parts evenly to the streams
in a round-robin manner. We also allocate a dedicated
pinned buffer to each stream. As each stream handles dif-
ferent data parts from each other, they can process the
given part independently while exploiting the concurrent
execution capability of the system. Prior studies have
indicated that the use of four streams yielded good per-
formance [31, 32]. In addition, we found that four
streams worked best for our algorithm. Therefore, we
designed our algorithm to use four streams.

Data-part size: The data transfer between CPU and
GPU memories is capable of achieving increased band-
width as the amount of data sent in one transmission is
increased [10, 11]. Therefore, increasing the data-part
size can improve the performance of the proposed algo-
rithm. To maximize the chunk size, we determine the
chunk size based on (7), where Cd is the chunk size (the
number of lines) in d dimensions, Vd is the size of the 1D
vector for 1D-FFT, jDevice memoryj is the available GPU
memory size, N stream is the number of streams, and k
(>1) is a coefficient for holding the memory space for 1D-
FFT computations.

Cd ≤
jDevice memoryj

kVdN stream
: ð7Þ

We set k to 3 because we needed space for the input
data, output data, and temporal space for the
computation.

4.4 | Memory footprint

Our FFT algorithm did not require additional memory
space for the output, as GPU handled the 1D-FFT

computation. The results were applied directly to the pre-
allocated space of the original (or input) data. Therefore,
we only needed additional space for the pinned buffers
on the host side. The size for pinned buffers was
CdVdNstream, which was bounded by the device memory
size (e.g., jDevice memoryj=k). Therefore, the memory
footprint of the host (Memhost) is defined by (8), where
jDataj denotes the size of the input data.

Memhost ¼ jDatajþCdVdN stream

¼OðjDatajþ jDevice memoryj=kÞ: ð8Þ

Our method uses as much device memory as possible
to improve data communication and computational effi-
ciencies, as mentioned in Section 4.3. Therefore, the
memory footprint of the device is bounded by the device
memory size for large-scale FFT problems.

5 | RESULTS AND ANALYSIS

We implemented our 3D-FFT algorithm on a system
equipped with an Nvidia RTX 3090, with a device mem-
ory of 24 GB. We employed CUDA 11.6 and cuFFT
libraries to implement GPU algorithms. To verify the
benefits of our method compared with prior approaches,
we implemented two alternative methods based on state-
of-the-art algorithms.

• FFTW is a state-of-the-art FFT library which uses a
multicore CPU. We used the ESTIMATE plan option
and set the number of threads to 32 (equal to the num-
ber of physical cores in the CPU).

• Chen is the implementation of Chen and Li [10] of a
state-of-the-art GPU-based FFT algorithm supporting
3D-FFT. For this implementation, we used cuFFT and
FFTW for the GPU and CPU modules, respectively. To
implement 3D-FFT, we divided the Z dimension into
the Z1 and Z2 segments, the Y dimension into the Y1
and Y2 segments, and computed the 5D-FFT of
Z1�Z2�Y1�Y2�X . We set the Z2 and Y2 to 32
because this setting yields the best performance based
on our benchmark. Chen performed 3D-FFT in two
phases; the first phase was for Z1�Y1�Y2 and the
second for Z2�X . Therefore, it needed two cuFFT
plans for each phase and required more device mem-
ory space than Ours. Their publication reported that
the best workload distribution between CPU and GPU
was 2:8 in their test. However, we found that only
GPU achieved the best performance in our system in
all the cases. Additionally, we found that the best num-
ber of streams depended on the input data size unlike
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the reported value (i.e., eight streams) in their publica-
tion. We tested various numbers of streams to compare
the outcomes with those obtained with our method.
For each input data, we used the best one for the result
of Chen.

Benchmarks: We generated a set of 3D data with ran-
dom complex numbers to measure the performance of
three algorithms (FFTW , Chen, and Ours). The data sizes
were varied from 210�210�211 to 212�212�210 in the
single-precision benchmark and from 29�210�211 to
211�211�211 in the double-precision benchmark. Tables
1 and 2 show information about the benchmarks used in
our experiments.

5.1 | Results

Tables 1 and 2 show the 3D-FFT computation times
using the algorithms FFTW, Chen, and Ours for each
benchmark. For single-precision benchmarks, Ours
achieved improved performances (up to 3.11 times [2.73
times on average]) than FFTW (Figure 3). We found that
the performance gap between FFTW and Ours increased
as the data size increased. For example, Ours yielded

improvement performances equal to 3.11 times and 2.25
times than FFTW for the 211�212�211 and 210�210�
211 cases, respectively. For data sizes equal to or less than
64GB (233), Chen achieved the best performance among
the three algorithms. However, the performance gap
between Chen and Ours decreased as the data size
increased. For the largest benchmarks (234, 128GB), Chen

TAB L E 1 This table shows three algorithms’ processing times

(seconds) for the benchmarks in single-precision complex numbers.

Data shape
Single precision

(2X �2Y �2Z) Data size (GB) FFTW Chen Ours

(10, 10, 11) 16 31.80 7.30 14.16

(10, 11, 10) 16 31.47 7.30 13.47

(11, 10, 10) 16 31.99 7.20 14.05

(10, 11, 11) 32 74.03 14.40 26.94

(11, 10, 11) 32 66.03 14.08 28.04

(11, 11, 10) 32 63.32 14.05 26.14

(10, 11, 12) 64 131.47 33.63 54.67

(10, 12, 11) 64 150.98 33.16 51.54

(11, 10, 12) 64 133.95 33.27 57.22

(11, 11, 11) 64 148.67 32.62 51.45

(11, 12, 10) 64 133.29 32.89 43.67

(12, 10, 11) 64 159.74 32.44 56.91

(12, 11, 10) 64 139.32 32.51 46.05

(10, 12, 12) 128 318.48 609.47 105.70

(11, 11, 12) 128 320.98 647.60 108.63

(11, 12, 11) 128 269.66 630.57 86.76

(12, 10, 12) 128 333.32 680.20 114.35

(12, 11, 11) 128 278.78 613.87 91.18

(12, 12, 10) 128 287.72 576.50 96.79

TABL E 2 This table shows three algorithms’ processing times

(seconds) for the benchmarks in double-precision complex

numbers.

Data shape
Double precision

(2X �2Y �2Z) Data size (GB) FFTW Chen Ours

(9, 10, 11) 16 17.80 2.40 9.30

(9, 11, 10) 16 16.33 2.46 9.18

(10, 9, 11) 16 15.21 2.17 9.39

(10, 10, 10) 16 14.06 2.20 9.19

(10, 11, 9) 16 16.88 2.25 8.92

(11, 9, 10) 16 15.13 2.15 9.63

(11, 10, 9) 16 17.63 2.19 9.19

(9, 11, 11) 32 33.49 15.33 18.34

(10, 10, 11) 32 36.79 14.85 18.44

(10, 11, 10) 32 34.63 14.76 17.69

(11, 9, 11) 32 32.90 14.49 19.31

(11, 10, 10) 32 30.58 14.56 18.30

(11, 11, 9) 32 35.38 16.24 16.40

(10, 11, 11) 64 68.75 35.07 35.53

(11, 10, 11) 64 72.70 34.56 36.75

(11, 11, 10) 64 69.64 34.50 32.54

(11, 11, 11) 128 134.06 576.17 65.63

F I GURE 3 Processing time comparison among three

algorithms for benchmarks in single-precision complex numbers.
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yielded significantly lower performance (e.g., 7.27 times)
than Ours and even lower than FFTW. Because Chen is
an out-of-place algorithm that requires a memory space
that is more than twice the input data size, the required
memory space exceeds the system memory size
(i.e., 256GB) of the testing system. The high memory
usage of Chen leads to significant performance degrada-
tion. Unlike Chen, Ours handled large-scale data
robustly, because it is a near-in-place algorithm. We dis-
cuss this memory-usage issue in Section 5.3

In the double-precision case, Ours achieved improved
performance up to 2.16 times (1.86 times on average)
than that of FFTW (Figure 4). Additionally, as in the
single-precision case, Ours yielded a higher performance
improvement than FFTW as the data size increased.
However, the overall performance improvement com-
pared to FFTW was less than that in the single-precision
case. This is because the performance difference between
the CPU and GPU is larger for single-precision than for
double-precision computations. Moreover, the overhead
for data transposition and communication in the single-
precision case was lower than that in the double-
precision case, as the data size was smaller than that of
the double-precision data. Nonetheless, we found that
Ours achieved better performance than FFTW for all
benchmarks at both precision levels. Chen also shows a
performance trend similar to that of single-precision
cases. However, Ours achieved a performance compara-
ble to that of Chen for large-scale data (e.g., 231–232, 32
GB–64 GB). Specifically, for the largest benchmarks
(233, 128 GB), Chen yielded significantly lower (i.e., 8.78
times) performance improvements than Ours, owing to
the huge memory usage of Chen.

These results confirm that our GPU-based 3D-FFT
algorithm is appropriate for handling large-scale 3D-FFT
problems.

5.2 | Performance analysis

Our method handles each data part in five steps (Section
4.1). We outline an in-depth analysis of the performance
of our 3D-FFT algorithm, and Figure 5 is a stacked
bar chart that shows the processing time for each step.
For this profiling, we used 211�211�211 data in single-
precision format. Please note that to measure the time
required for each step, we implemented synchronization
at the beginning and end of each task. However, in an
actual implementation, these steps would be executed
concurrently without synchronization (Section 4.3).

Among the five steps, data transposition (Transpose)
and inverse transposition (iTranspose) are the most time
consuming. Transpose and iTranspose require approxi-
mately 45% and 29% of the total workload, respectively
(i.e., the total summation of the processing time for each
step). Our method employed 1D-FFT-based 3D-FFT com-
putations, and the transposition methods differed accord-
ing to the target dimension (Section 4.2). Consequently,
different times were required for Transpose and iTran-
spose depending on the target dimension. For the bench-
mark 211�211�211 in the single-precision case
(Figure 5), Transpose required 6.1 and 19.9 s for Y and Z
dimensions. Because the X dimension did not require
data transposition, it only required time to copy the data
to the pinned buffer, which was equal to 2.9 s. This
means that the data-transposition (Transpose) overhead
for the Y and Z dimensions are approximately 6.7 and
2.1 times higher than those required to copy the data
(e.g., for the X dimension). Although data transposition
requires this overhead, we found that the summation of

F I GURE 5 This stacked bar chart shows the total processing

time for each step. We used 211�211�211 data in single precision

for this profiling. Each bar stacks the processing time for each

dimension.
F I GURE 4 Processing time comparison among three

algorithms for benchmarks in double-precision complex numbers.

1042 LEE and KIM



the time for the two transposition steps and CPU–GPU
data communications required considerably less time
(e.g., 56%) than the time required for data transfer
between the CPU and GPU without transposition.

The transposition for the Z dimension required 3.3
times more computation time than that for the Y dimen-
sion. The elements along the Z dimension have greater
memory distances with neighboring elements than the
Y -dimensional vector. The longer the memory distance,
the more disadvantageous the cache utilization efficiency
(e.g., hit ratio). To check the cache efficiency in the trans-
position step for each dimension, we measured the last
level cache (LLC) misses using Intel’s Vtune analyzer.
Because Vtune does not work with AMD’s CPU in our
testing system, we used another system equipped with an
Intel CPU (i.e., Intel i7-9700k) for this analysis. For this
analysis, we used 211�211�211 data in single precision,
and the numbers of LLC misses for the Z, Y , and X
dimensions were 461 M, 395 M, and 1.9 M, respectively.
This result explains why the transposition for the Z
dimension required more time than other dimensions.

Conversely, iTranspose along the Y and Z dimensions
yielded a similar performance. As the data in the pinned
buffer are transposed data, continuous data are read effi-
ciently, unlike the Transpose case, wherein each element
in the original 3D data is read across the dimension.
Although the Transpose’s writing operation to the pinned
buffer accesses the sequential region, the preceding work
(i.e., reading from the original data) delays it because it is
a cache-inefficient memory operation. Therefore, we
found that iTranspose requires less time than Transpose
for both the Y and Z dimensions.

With the exception of the two transposition steps,
data communication between the CPU and GPU
accounted for the highest part of the overall processing
time. In Figure 5, the data transfer from CPU to GPU
(i.e., TransferH2D) required 7.9 s, and data copy from
GPU to CPU (i.e., TransferD2H) required 7.8 s. These
values are approximately 12% of the total workload. The
unit of data transfer is the data part of the same size, and
the only difference between TransferH2D and Trans-
ferD2H is the transfer direction. This implies that the
workload was almost the same as the profiling result. For
211�211�211 single-precision data, 64GB of data was
transferred along each dimension. In Figure 5, the data
transfer time of a dimension is approximately 2.6 s, and
its transfer speed is 24.6GB/s. The system used in our
experiment had PCIe4.0x16, and its theoretical maximum
bandwidth was 31.51GB/s. Therefore, our algorithm
achieved 78% of the theoretical maximum bandwidth.
We can achieve this high utilization rate of the communi-
cation interface bandwidth because the algorithm maxi-
mizes the data-part size while considering the size of the
device’s memory and the number of streams.

The 1D-FFT steps required the smallest number of
steps (approximately 3% (1.5 s) of the total workload). This
is because the 1D-FFT computation fit the GPU’s parallel
architecture, and the GPU yielded a much higher perfor-
mance than the CPU for these data parallelism tasks.

As stated above, the transpose step requires more
time than the total time required by the data transfer and
1D-FFT steps. At runtime, in cases in which we used
multiple streams, the time for data transfer and GPU
computation was hidden by the times for data transposi-
tion. Consequently, we can see that the actual total pro-
cessing time (e.g., 51.45 s) is almost the same as the
summation of the processing times for Transpose and
iTranspose (e.g., 47.53 s).

5.3 | Memory usage

The FFTW library supports both in-place and out-of-
place computations. The in-place algorithm does not
require additional memory space, and the memory usage
of FFTW in in-place mode is almost the same as the input
data size (i.e., jDataj). Chen is an out-of-place algorithm
that requires more than 2�jDataj because it requires
memory space for output. Therefore, Chen requires mem-
ory space in excess of 256GB for the largest double-
precision benchmark. This is larger than the test system’s
physical memory space (256GB). The virtual memories
of operating systems make it possible to run a program
that requires larger space than the physical memory size.
However, using virtual memory spaces can degrade the
processing performance considerably because the virtual
memory method uses a part of the swap device (or disk),
which is much slower than physical memory [33]. This is
the reason for Chen’s abnormally low performance on
large-scale data.

Conversely, as mentioned in Section 4.4, the memory
footprint of Ours is OðjDatajþ jDevice memoryj=kÞ.
Because we set k to three, our method used approxi-
mately 136GB (i.e., 128+ 8GB) of system memory for
the largest benchmark (i.e., 211�211�211) in a double-
precision format. It can be inferred that Ours is a near-in-
place algorithm. Therefore, Ours yielded a more stable
performance in terms of data-size increments than Chen.
These results demonstrate the robustness of the proposed
approach for large-scale 3D-FFT computations.

6 | CONCLUSION AND FUTURE
WORK

We presented a novel GPU-based 3D-FFT algorithm for
large-scale 3D data whose sizes were larger than the
GPU’s device memory. Our method employed a 1D-FFT-
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based, high-dimensional FFT approach to handle large-
scale data using limited device memory. To improve the
data communication efficiency between the CPU and
GPU memories, we proposed a 3D transposition method
to place the 1D vector of the target dimension in a contig-
uous memory region. We also employed the pinned
buffer instead of placing all the data in the pinned mem-
ory, as only a part of the system memory can serve as
page-locked memory, thus limiting the maximum data
size that can be handled. To optimize the performance of
our algorithm, we utilized multiple streams that were
associated with overlapped computations on GPU and
data transfer between the host and device memories.
Additionally, we maximized the part (i.e., the work unit
of our method) by considering the size of the device
memory and the number of streams to achieve the maxi-
mum utilization of the bandwidth of the communication
interface (i.e., PCIe).

We implemented our method on a GPU system and
compared its performance with an alternative implemen-
tation using the state-of-the-art FFT library for large-scale
3D-FFT problems. As a result, our GPU-based algorithm
achieved improved performance by up to 2.89 times com-
pared with those of alternative implementations
(i.e., FFTW). Furthermore, our algorithm exhibited an
improved performance for all benchmarks. These results
demonstrate the advantages of the proposed approach for
large-scale 3D-FFT problems.

Utilizing GPU for FFT computations significantly
reduced the processing time of 1D-FFT. Consequently,
in the proposed method, additional data-transposition
tasks that arise when a GPU is employed become a per-
formance bottleneck. In future work, we would like to
design an efficient data-transposition algorithm for
large-scale 3D data. In addition, we would like to
extend our algorithm to a heterogeneous parallel 3D-
FFT algorithm utilizing all available computing
resources, including multicore CPUs and different types
of GPUs, as in Kim and others [34]. This work assumes
that the system memory is adequate to hold the input
data. However, this may not be valid for extreme-scale
problems. As another future research direction, we
would like to design an efficient out-of-core FFT algo-
rithm that can handle massive-scale data sizes exceed-
ing the system memory size.
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