• Title/Summary/Keyword: Development Process of the Operational Concept

Search Result 71, Processing Time 0.027 seconds

Impact of MOPs on Effectiveness for M-to-M Engagement with the Counter Long Range Artillery Intercept System (다대다 교전 효과도에 있어서 각 요소 성능의 영향력 연구 - 장사정포 요격체계 시뮬레이션)

  • Yook, Jung Kwan;Hwang, Su Jin;Kim, Tae Gu
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.57-72
    • /
    • 2020
  • To respond to the threat of Long range artillery of North Korea, it is necessary to establish the Korean counter long range artillery intercept system(CLRAIS). The purpose of this study is to study the operational concept of the CLRAIS against the threat of long range artillery of North Korea, and to develop the operational effectiveness process of the CLRAIS. First, we set up the operating concept of the CLRAIS and established the concept of an effectiveness in a many-to-many engagement situation and a process to derive it. Based on this, a tool was developed to analyze the actual effectiveness. In order to find out the factors influencing the effectiveness in many-to-many engagement situations, simulation experiments were performed by combining various variables such as detection assets, engagement control, and launchpad performance. As a result, it was found that in addition to the missile performance, the performance of the detection assets and the engagement control center had a significant impact on the intercept rate and the defense success rate. These findings can be used to understand important indicators in terms of effectiveness in many-to-many engagement situations in the future development of weapon system, and to determine the development direction and target value of each element necessary for the level of defense success rate to be achieved.

Critical Research on Bruner's EIS Theory (Bruner의 EIS 이론에 대한 비판적 고찰)

  • 홍진곤
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.553-563
    • /
    • 1998
  • In this thesis, I examined Bruner's EIS theory from the viewpoint of epistemology based on Piaget's genetic epistemology. Although Bruner's ideal thought which insisted ‘to teach the structure’accepted Piaget's theory in the methodology of realization, it is different from Piaget in understanding knowledge. The difference is shown from understanding the meaning of ‘structure’. Piaget's concept of structure is something that has overcome the realistic viewpoint of the traditional epistemology and is reconstructed through endless self-regulative transformational process. However Bruner's is used as a realistic meaning as we can see in the Plato's recollection theory. Therefore Piaget's ‘stage of development’means the difference of structure which lies in the generative process and it includes the qualitive difference of level. On the other hand, Bruner, who is trying to translate and suggest the fixed structure to the children understood Piaget's stage of development as the difference in the ways of representation. Piaget's operational constructivism insists that the children should ‘construct’the knowledge through their activity, and especially in case of the lohico-mathematical recognition, the source should be internalized activity, that is, operation. In view of this assertion, Burner's idea which insists to accept the structure of knowledge as a fixed reality and to suggest the translated representation proper to the cognitive structure of the children to teach them, has a danger of emphasizing only the functional aspects to deliver the given knowledge ‘quickly’. And it also has the danger of damaging ‘the nature of the knowledge’in the translated knowledge.

  • PDF

On the Development of an FMEA Method for Automotive Safety Utilizing Design Traceability (자동차 안전성 설계에서 설계 추적성을 활용한 고장형태 영향분석에 관한 연구)

  • Lim, Gwan-Taik;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • In modern systems design and development, one of the key issues is considered to be related with how to reflect faithfully the stakeholder requirements including customer requirements therein, thereby successfully implementing the system functions derived from the requirements. On the other hand, the issue of safety management is also becoming greatly important these days, particularly in the operational phase of the systems under development. An approach to safety management can be based on the use of the failure mode effect and analysis (FMEA), which has been a core method adopted in automotive industry to reduce the potential failure. The fact that a successful development of cars needs to consider both the complexity and failure throughout the whole life cycle calls for the necessity of applying the systems engineering (SE) process. To meet such a need, in this paper a method of FMEA is developed based on the SE concept. To do so, a process model is derived first in order to identify the required activities that must be satisfied in automotive design while reducing the possibility of failure. Specifically, the stakeholder requirements were analyzed first to derive a set of functions, which subsequentially leads to the task of identifying necessary HW/SW components. Then the derived functions were allocated to appropriate HW/SW components. During this design process, the traceability between the functions and HW/SW components were generated. The traceability can play a key role when FMEA is performed to predict the potential failure that can be described with the routes from the components through the linked functions. As a case study, the developed process model has been applied in a project carried out in practice. The results turned out to demonstrate the usefulness of the approach.

A Systems Engineering Approach for CEDM Digital Twin to Support Operator Actions

  • Mousa, Mostafa Mohammed;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.16-26
    • /
    • 2020
  • Improving operator performance in complex and time-critical situations is critical to maintain plant safety and operability. These situations require quick detection, diagnosis, and mitigation actions to recover from the root cause of failure. One of the key challenges for operators in nuclear power plants is information management and following the control procedures and instructions. Nowadays Digital Twin technology can be used for analyzing and fast detection of failures and transient situations with the recommender system to provide the operator or maintenance engineer with recommended action to be carried out. Systems engineering approach (SE) is used in developing a digital twin for the CEDM system to support operator actions when there is a misalignment in the control element assembly group. Systems engineering is introduced for identifying the requirements, operational concept, and associated verification and validation steps required in the development process. The system developed by using a machine learning algorithm with a text mining technique to extract the required actions from limiting conditions for operations (LCO) or procedures that represent certain tasks.

An Air Defence M&S Architecture Design Framework for a Reusability (재사용을 위한 방공 M&S 아키텍처 설계 프레임워크)

  • Yun, Keunho;Shim, Shinwoo;Hwang, Jongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-662
    • /
    • 2014
  • In the development of the weapon systems, utilization of Modeling & Simulation is growing in every aspect of development process. For the higher utilization of M&S, reuse of the M&S resources is needed to reduce the cost of M&S. I propose the M&S architecture framework that can enhance the reusability of the M&S resources in developing surface-to-air weapon systems. This M&S architecture design framework enables interoperability between the system and sub-systems. In this paper, the advantage and the necessity of the M&S architecture design framework will be described by introducing the cases that the M&S architecture framework reused in the combat experiments, the system development tests, the system operational tests and the concept developments in real projects. These cases will show the high reusability and efficiency of the M&S architecture design framework.

Research on Deriving Requirements through Operational Scenarios and Interface Analysis of Future Logistics Transportation System based on Underground Tunnels (지하터널기반 미래물류 운송체계의 운영 시나리오 및 인터페이스 분석을 통한 요구사항 도출 연구)

  • Myung Sung Kim; Sung Jin Lee;Young Min Kim;Na Hyun Yi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.65-75
    • /
    • 2024
  • As the demand for logistics services increases rapidly in modern society, the existing freight delivery system through road transportation is caused various problems such as traffic congestion and greenhouse gas emissions. To solve that, the development of an 'underground logistics tunnel-based cargo transportation system' is currently being considered in Korea. In order to build a new concept stable and safe logistics system, derive system design requirements and functional specifications, and reflect them at the development of target system. In this study, to make foundation for development of an "underground logistics tunnel-based cargo transportation system," define system components through analysis from a hierarchical perspective, and the functions of each component were analyzed and defined. We identified what interfaces the components have at each stage of the operating process. Lastly, we defined a detailed operation scenario based on the previously derived results, deriving target system functional requirements.

Reframing the National Art Museum: the Trajectory and Controversy towards the Operational Autonomy: the Case of the National Museum of Modern and Contemporary Art, Korea (국립미술관의 재구성: 운영의 자율성을 향한 궤적 그리고 논란 - 국립현대미술관의 사례를 중심으로 -)

  • Kim, Yon Jai
    • Korean Association of Arts Management
    • /
    • no.53
    • /
    • pp.71-99
    • /
    • 2020
  • This study focuses on the case of the National Museum of Modern and Contemporary Art, Korea (hereafter MMCA) that has faced the issue of securing autonomy as an art institution in association with the neoliberal logic of economy as part of globalization. The MMCA was opened with limited operational autonomy due to the government's development-driven national system and bureaucratic perspective. Since being selected as an institution subject to a range of restructuring consequent to the IMF crisis in 1997, the MMCA is being assessed for its operational autonomy since then. This paper examines the socio-cultural background of the implementation of the Korean type of 'Executive Agency' and 'Non-Departmental Public Body'. Furthermore, regardless of the result of either implementation or withdrawal after the projects, this paper explains how these administrative reforms lead the conflicts between stakeholders, which would promote the MMCA's autonomy. As a result, the institutional restructuring process based on the neoliberal perspective might result in the operational dilemma that must simultaneously fulfil the publicness in a different context. Moreover, unlike the original intent to establish a performance-based system based on the principle of competition while minimizing government intervention, this study illuminates that the influence of the nation(or government) as the actual agent of the projects may become permanent. It implies that since the establishment and development project of MMCA has initialized the concept of statism based on legal authority, the operational autonomy of the MMCA which is premised on the reinforcement of expertise and publicness cannot be prioritized over the direction and control of the government.

A Study on the Reestablishment of the Drone's Concept (드론 개념의 재정립에 관한 연구)

  • Lee, Seungyoung;Kang, Wook
    • Korean Security Journal
    • /
    • no.58
    • /
    • pp.35-58
    • /
    • 2019
  • Drone was originally developed for air force aircraft or missile exercise shooting targets, and is being considered as the entire unmanned aircraft to the public. The core concept of a drone can be divided into 'unmanned' and 'aircraft'. However, there are many questions about whether the Fourth Industrial Revolution, expressed as a convergence scientific innovation, is appropriate at a time when smart cities are proposed as a concept of new urban spatial formation, and the role of self-driving vehicles, including drones, is being emphasized within the new urban integrated transport system. In this study, the concept of the existing drones was analyzed for the development process, definitions in each country's laws, and the results of the preceding research to present a concept suitable for future society and a unified term. It is not desirable to define a drone for the purpose of a country, an institution, or an operating entity, depending on the circumstances of the era. It is more reasonable to find the concept of a drone based on human life than in the traditional way, and more reasonable considering the development of the drones in the future. Subsequent studies should be more detailed, more data and research results analyzed, and discussed areas that were not covered in this study. Based on this, research should also be conducted on a variety of topics, including legislation, preparation of operational regulations, and related industrial processes and regulations.

Collaboration Development Factors and Consideration for Community Health Promotion Practice (지역사회 건강증진을 위한 협력개발 요인과 논점)

  • Yoo, Seung-Hyun
    • Korean Journal of Health Education and Promotion
    • /
    • v.27 no.5
    • /
    • pp.73-78
    • /
    • 2010
  • Background: Although collaboration for community health is emphasized, the concept and process of collaboration are rather unclear. International research has classified the types of collaboration and focused on the factors influencing successful collaboration. Greater attention is needed for collaboration practice and research domestically. Findings: By the level of intensity, the types of collaboration range from simpler networking to more formal and sophisticated collaboration. A 4-stage collaboration development consists of formation, implementation, maintenance, and institutionalization stages. Influential factors for collaboration development include: shared goals; operational structure and process; sufficient resources; member and leadership characteristics; environment and climate for collaboration; and information exchange and communication. Discussion: Most of collaboration research so far has dealt with partnerships and coalition building with community-based organizations, and much attention is given to private-public partnership for health. Contextual understanding and collaborative environment are the foremost tasks for us to enhance collaboration for community health in our centralized public health system.

Safety Management for MR-Guided Interventions

  • Cherkashin, Mikhail;Berezina, Natalia;Serov, Alexey;Fedorov, Artem;Andreev, Georgy;Kuplevatsky, Vladymir
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2016
  • Purpose: Operating room management is the serious and complex task for hospital managers and the common approach is to develop relevant standard operational procedures. From patient and staff safety perspective, operating room management should be well-studied and hospital should identify and address any potential risks. Simultaneous usage of different imaging and less-invasive treatment technologies demands strong management control. Materials and Methods: We have formed the multidisciplinary expert panel (surgeons, anesthesiologists, radiologists, healthcare managers etc.) for hybrid theater management standard operational procedure development. On the first stage the general concept of hybrid room design and patient routing was developed. The second stage included the technical details discussion. For patient safety improvement we modified the Surgical Safety Check-list in accordance with potential MRI-related safety challenges and concerns. Results: WHO Surgical Safety Checklist is a simple and easy-to use tool which includes three blocks of question (grouped by the surgery process). We have developed two additional blocks of questions for the intraoperative magnetic resonance investigation. It is very important to have a special detailed routing with a strong control of ferromagnetic devices and anesthesiology care. Conclusion: High-energy MRI (1.5-3.0T) is characterized by potential influence on patient and staff safety in case of hybrid surgery. It is obvious to have a strong managerial control of ferromagnetic devices and anesthesiology care. Surgical Safety Checklist is the validated tool for improving patient safety. Modification and customization of this check-list potentially provides the opportunity for surgery processes improving.