• Title/Summary/Keyword: Detection of bacteria

Search Result 579, Processing Time 0.029 seconds

Detection of Vibrio vulnificus in Fish Farm and Bactericidal Methods on this Bacteria (가두리 양식장의 Vibrio vulnificus 검출 및 제어 방법)

  • 성치남;송계민;이규호;양성렬
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • Detection of Vibrio vulnificus in fish farm and searching for the bactericidal methods on this bacteria were studied. To detect this microorganism in sea water, mud, fish and mussels, selective isolation methods and detection of vvhA gene were used from January to October,2000. V. vulnificus was detected from May when the water temperature was over $17^{\circ}C$. From June to September, higher than $19^{\circ}C$, this bacteria could be isolated from most of the samples. Freezing and refrigerating did not inhibit the growth of V. vulnificus. Citric acid did not show the bactericidal effect, but more than 500 mg/l of EDTA did. With the aid of UV and photocatalyst, $TiO_{2}$ showed bactericidal effect after 15 minute treatment. Photocatalytic system consisted of glass bead coated with $TiO_{2}$ and UV illumination showed bactericidal effect on V. vulnificus at the turnover rate of 0.2/min.

Review and Future Development of New Culture Methods for Unculturable Soil Bacteria (난배양성 토양세균을 위한 신배양기술의 고찰과 향후 발전 방향)

  • Kim, Jai-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.179-187
    • /
    • 2011
  • This review describes the characteristics of various unculturable soil bacteria, successfully-cultivating examples of those bacteria, and the diverse factors to be considered for successful cultivation. Most importantly, the selection of proper media is very important because unculturable bacteria demand different types of nutrients at various concentrations of substrates, nitrogens and phosphorus. To develop a new medium to successfully culture unculturable bacteria from soil, molecular ecological studies should be combined together. The inoculum size on a plate is also important: less than 50 bacterial cells are recommended to be plated on a single culture plate. The environmental factors such as pH and salt concentration of the medium need to be adjusted as similar as possible to mimic the original soil environments, and the trial of the various temperatures and extended period of cultivation are better. Since one cannot simply tell about which one was unculturable among a great number of colonies grown on a newly developed medium, some suitable detection methods and fast identification methods are required. Many soil bacteria live with cooperation one another in their communities, so that enrichment such as coculture of using other bacterial metabolites and subsequent pure cultures can also guarantee successful cultivation of the previously uncultured bacteria in soil. Here, this review will discuss for the future perspectives to culture the unculturable soil bacteria.

Visualization of periodontopathic bacteria within crevicular epithelial cells with fluorescence in situ hybridization (형광제자리부합법을 이용한 치은열구세포 내의 치주염 유발 세균의 관찰)

  • Ko, Young-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • Purpose: Periodontal pathogens can invade the host tissue. Morphologic studies have revealed bacteria within the pocket epithelium, gingival connective tissues, alveolar bone, and oral epithelium. The objective of this study was to visualize and evaluate presence of Porphyromonas gingivalis and Tannerella forsythia in crevicular epithelial cells of periodontally healthy subjects and chronic periodontitis patients. Materials and Methods: A total of 666 crevicular epithelial cells in the samples obtained from 27 chronic periodontitis patients and 9 healthy volunteers were examined. Specific probes for P. gingivalis and T. forsythia and a universal probe for detection of all eubacteria targeting 168 rRNA for fluorescence in situ hybridization was used in conjunction with confocal laser scanning microscopy. Results: 98.99% of sulcular epithelial cells from healthy volunteers and 84.40% of pocket epithelial cells from periodontitis patients were found to harbor bacteria. P. gingivalis and T. forsythia were discovered more often in crevicular epithelial cells from periodontitis patients. Conclusion: P. gingivalis and T. forsythia can invade crevicular epithelial cells and intracellular bacteria may act as a source of bacteria for persistent infection.

Rapid, Sensitive, and Specific Detection of Salmonella Enteritidis in Contaminated Dairy Foods using Quantum Dot Biolabeling Coupled with Immunomagnetic Separation

  • Kim, Hong-Seok;Chon, Jung-Whan;Kim, Hyunsook;Kim, Dong-Hyeon;Yim, Jin-Hyuk;Song, Kwang-Young;Kang, Il-Byung;Kim, Young-Ji;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.271-275
    • /
    • 2015
  • Colloidal semiconductor CdSe-ZnS core-shell nanocrystal quantum dot (Qdot) are luminescent inorganic fluorophores that show potential to overcome some of the functional limitations encountered with organic dyes in fluorescence labeling applications. Salmonella Enteritidis has emerged as a major cause of human salmonellosis worldwide since the 1980s. A rapid, specific, and sensitive method for the detection of Salmonella Enteritidis was developed using Qdot as a fluorescence marker coupled with immunomagnetic separation. Magnetic beads coated with anti-Salmonella Enteritidis antibodies were employed to selectively capture the target bacteria, and biotin-conjugated anti-Salmonella antibodies were added to form sandwich immune complexes. After magnetic separation, the immune complexes were labeled with Qdot via biotin-streptavidin conjugation, and fluorescence measurement was carried out using a fluorescence measurement system. The detection limit of the Qdot method was a Salmonella Enteritidis concentration of $10^3$ colony-forming units (CFU)/mL, whereas the conventional fluorescein isothiocyanate-based method required over $10^5CFU/mL$. The total detection time was within 2 h. In addition to the potential for general nanotechnology development, these results suggest a new rapid detection method of various pathogenic bacteria from a complex food matrix.

  • PDF

MEMS based capacitive biosensor for real time detection of bacterial growth (실시간 박테리아 감지를 위한 정전용량방식의 MEMS 바이오센서)

  • Seo, Hye-Kyoung;Lim, Dae-Ho;Lim, Mi-Hwa;Kim, Jong-Baeg;Shin, Jeon-Soo;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.195-202
    • /
    • 2008
  • A biosensor based on the measurement of capacitance changes has been designed and fabricated for simple and realtime detection of bacteria. Compared to an impedance measurement technique, the capacitance measurement can make additional measurement circuits simpler, which improves a compatability for integration between the sensor and circuit. The fabricated sensor was characterized by detecting Escherichia coli(E. coli). The capacitance changes measured by the sensor were proportional to E. coli cell density, and the proposed sensor could detect $1{\times}10^6$ cfu/ml E. coli at least. The real-time detection was verified by measuring the capacitance every 20 minutes. After 7 hours of E. coli growth experiment, the capacitance of the sensor in the micro volume well with $4.5{\times}10^5$ cfu/ml of initial E. coli density increased by 20 pF, and that in another wells with $1.5{\times}10^6$ cfu/ml and $8.5{\times}10^7$ cfu/ml initial E. coli density increased by 56 pF and 71 pF, respectively. The proposed sensor has a possibility of the real-time detection for bacterial growth, and can detect E. coli cells with $1.8{\times}10^5$ cfu in nutrient broth in 5 hours.

Trends in the rapid detection of infective oral diseases

  • Ran-Yi Jin;Han-gyoul Cho;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • v.48 no.2
    • /
    • pp.9-18
    • /
    • 2023
  • The rapid detection of bacteria in the oral cavity, its species identification, and bacterial count determination are important to diagnose oral diseases caused by pathogenic bacteria. The existing clinical microbial diagnosis methods are time-consuming as they involve observing patients' samples under a microscope or culturing and confirming bacteria using polymerase chain reaction (PCR) kits, making the process complex. Therefore, it is required to analyze the development status of substances and systems that can rapidly detect and analyze pathogenic microorganisms in the oral cavity. With research advancements, a close relationship between oral and systemic diseases has been identified, making it crucial to identify the changes in the oral cavity bacterial composition. Additionally, an early and accurate diagnosis is essential for better prognosis in periodontal disease. However, most periodontal disease-causing pathogens are anaerobic bacteria, which are difficult to identify using conventional bacterial culture methods. Further, the existing PCR method takes a long time to detect and involves complicated stages. Therefore, to address these challenges, the concept of point-of-care (PoC) has emerged, leading to the study and implementation of various chair-side test methods. This study aims to investigate the different PoC diagnostic methods introduced thus far for identifying pathogenic microorganisms in the oral cavity. These are classified into three categories: 1) microbiological tests, 2) microchemical tests, and 3) genetic tests. The microbiological tests are used to determine the presence or absence of representative causative bacteria of periodontal diseases, such as A. actinomycetemcomitans, P. gingivalis, P. intermedia, and T. denticola. However, the quantitative analysis remains impossible, and detecting pathogens other than the specific ones is challenging. The microchemical tests determine the activity of inflammation or disease by measuring the levels of biomarkers present in the oral cavity. Although this diagnostic method is based on increase in the specific biomarkers proportional to inflammation or disease progression in the oral cavity, its commercialization is limited due to low sensitivity and specificity. The genetic tests are based on the concept that differences in disease vulnerability and treatment response are caused by the patient's DNA predisposition. Specifically, the IL-1 gene is used in such tests. PoC diagnostic methods developed to date serve as supplementary diagnostic methods and tools for patient education, in addition to existing diagnostic methods, although they have limitations in diagnosing oral diseases alone. Research on various PoC test methods that can analyze and manage the oral cavity bacterial composition is expected to become more active, aligning with the shift from treatment-oriented to prevention-oriented approaches in healthcare.

Identification of Salmonella Pathogen Using Electronic Nose (전자코를 이용한 살모넬라 식중독균 판정)

  • Kim G.;Lee M. W.;Lee K. J.;Choi C. H.;Noh K. M.;Kang S,;Chang Y. C.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.121-126
    • /
    • 2005
  • In this study, a commercial electronic nose system was used to detect contamination of Salmonella bacteria. Odors from growth media contaminated with Salmonella typhimurium, Salmonella enteritidis, or Escherichia coli were collected and analyzed to evaluate a possibility of rapid detection of pathogen. Odor chromatograph showed that S. typhimurium, S. enteritidis, and E. coli had 7,6, and 9 main peaks, respectively. Retention time and intensity of the peaks were distinct for different bacteria species. Principal component analysis (PCA) were also performed to clarify odor differences. Analysis results showed that the odors for uncontaminated growth medium were differently grouped from the odors of contaminated one. The odor from the bacteria growth identified with two principal components, PC 1 and PC2. In PCA figures, odor groups were moved from left to right of PC 1 with elapse of the bacteria growth time. The electronic nose system could detect odors of S. typhimurium, S. enteritidis, E. coli when their concentration were $1.85\times10^6\;cfu/g,\;2.25\times10^6\;cfu/g,\;and\;1.8\times10^5 cfu/g$, respectively.

Development of a Fiber-Optic Biosensor for the Detection of Listeria monocytogenes (리스테리아 식중독균 검출을 위한 광학식 바이오센서 개발)

  • Kim G.;Choi K.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.128-134
    • /
    • 2006
  • Frequent outbreaks of foodborne illness demand the need for rapid and sensitive methods for detection of these pathogens. Recent development of biosensor technology has a great potential to meet the need for rapid and sensitive pathogens detection from foods. An antibody-based fiber-optic biosensor and an automated reagents supply system to detect Listeria monocytogenes were developed. The biosensor for detection of Listeria monocytogenes in PBS and bacteria spiked food samples was evaluated. The automated reagents supply system eliminated cumbersome sample and detection antibody injection procedures that had been done manually. The biosensor could detect $10^4$ cfu/ml of Listeria monocytogenes in PBS. By using the fiber-optic biosensor, $2x10^8$ cfu/ml of Listeria monocytogenes in the food samples were detectable.

PCR-Based Detection of Lactic Acid Bacteria in Korean Fermented Vegetables with recA Gene Targeted Species-Specific Primers (RecA 유전자 특이적 PCR을 이용한 전통 침채류 유래 유산균의 검출)

  • Shim, Sang-Min;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.96-100
    • /
    • 2008
  • Diversity of lactic acid bacteria involved in 5 Korean fermented vegetables (Cot kimchi, Dongchimi, Baechu kimchi, Oisobagi, and Chonggak kimchi) was investigated using PCR-based method. PCR primer pairs targeted the recA gene were used for the detection of 7 species of lactic acid bacteria mainly found in kimchi and Lactobacillus acidophilus involved in dairy fermentation. Lactobacillus plantarum and Lactobacillus sakei were detected in all samples tested but Lactobacillus paraplantarum, Lactobacillus pentosus, and Lb. acidophilus were not detected. Lactobacillus brevis and Leuconostoc citreum were detected only from Baechu kimchi and Leuconostoc mesenteroides was detected from Got kimchi, Dongchimi, Baechu kimchi, and Oisobagi. The difference of detected species from fermented vegetables may be originated from the difference of main materials. Lb. plantarum and Lb. sakei are supposed to be broadly involved in Korean fermented vegetables.

Ultraviolet Lamp Replacement Period and Hygiene Management Plan of Ultraviolet Sterilizer (자외선 살균고의 자외선 램프 교체 주기와 위생관리 방안)

  • Young-Ju Lee;Ju-Hyun Lee;Eun-Sol Go;Jung-Beom Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.26-30
    • /
    • 2023
  • In this study, we analyzed the microbial contamination level of ultraviolet sterilizer (UVS) chambers and suggested plans to improve hygiene management. In this study, UVS chambers targeted 98 UVS in some childcare centers in Jeollanam-do, Korea. Total aerobic bacteria and coliform bacteria were tested according to the Korean Food Code. Of the 98 UVS chambers, total aerobic bacteria were detected in 67 (68.4%) and coliform bacteria in 5 (5.1%). Six kinds of food-poisoning bacteria, including Salmonella spp., were not detected, but Bacillus cereus was detected in 1 (2.8%) out of 98 UVS chambers. According to the UV lamp replacement period, the detection rate of total aerobic bacteria was 3 (50%) out of 6 UVS within 3 months, 3 (60%) out of 5 UVS in 3 to 6 months, and 61 (70.1%) out of 87 UVS over 6 months. The detection rate of coliform bacteria according to the UV lamp replacement period was not detected within 6 months, however, they were detected in 5 (5.7%) out of 87 chambers after more than 6 months. The level of microbial contamination in the UVS chambers was higher as the lamp replacement period was longer. Considering these results, it was determined that the UVS chambers should be kept dry and clean, and the UV lamp should be replaced periodically. In addition, it is necessary to provide the staff catering for childcare centers with continuous education regarding the cleaning of UVS chambers and the replacement of UV lamps.