Browse > Article

Review and Future Development of New Culture Methods for Unculturable Soil Bacteria  

Kim, Jai-Soo (Department of Life Science, Kyonggi University)
Publication Information
Korean Journal of Microbiology / v.47, no.3, 2011 , pp. 179-187 More about this Journal
Abstract
This review describes the characteristics of various unculturable soil bacteria, successfully-cultivating examples of those bacteria, and the diverse factors to be considered for successful cultivation. Most importantly, the selection of proper media is very important because unculturable bacteria demand different types of nutrients at various concentrations of substrates, nitrogens and phosphorus. To develop a new medium to successfully culture unculturable bacteria from soil, molecular ecological studies should be combined together. The inoculum size on a plate is also important: less than 50 bacterial cells are recommended to be plated on a single culture plate. The environmental factors such as pH and salt concentration of the medium need to be adjusted as similar as possible to mimic the original soil environments, and the trial of the various temperatures and extended period of cultivation are better. Since one cannot simply tell about which one was unculturable among a great number of colonies grown on a newly developed medium, some suitable detection methods and fast identification methods are required. Many soil bacteria live with cooperation one another in their communities, so that enrichment such as coculture of using other bacterial metabolites and subsequent pure cultures can also guarantee successful cultivation of the previously uncultured bacteria in soil. Here, this review will discuss for the future perspectives to culture the unculturable soil bacteria.
Keywords
coculture; metagenomics; new culture method; soil bacteria; unculturable;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Hattori, T. and R. Hattori. 1976. The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Crit. Rev. Microbiol. 4, 423-461.   DOI
2 Hattori, R. and T. Hattori. 1980. Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J. Gen. Appl. Microbiol. 26, 1-14.   DOI
3 Hattori, S., A.S. Galushko, Y. Kamagata, and B. Schink. 2005. Operation of the CO dehydrogenase/acetyl-CoA pathway both in acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J. Bacteriol. 187, 3471-3476.   DOI   ScienceOn
4 Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun. 2000. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 50, 1601-1609.   DOI   ScienceOn
5 Huber, H., M.J. Hohn, R. Rachel, T. Fuchs, V.C. Wimmer, and K.O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63-67.   DOI   ScienceOn
6 Hugenholtz, P., B.M. Goegel, and N.R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774.
7 Ishikuri, S. and T. Hattori. 1985. Formation of bacterial colonies in successive time intervals. Appl. Environ. Microbiol. 49, 870-873.
8 James, N. and M. Sutherland. 1940. Effect of numbers of colonies per plate on the estimate of the bacterial population in soil. Can. J. Res. Section C. 18, 347-356.
9 Janssen, P.H., P.S. Yates, B.E. Grinton, P.M. Taylor, and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391-2396.   DOI   ScienceOn
10 Jensen, V. 1962. Studies on the microflora of Danish beech forest soils. I. The dilution plate count technique for enumeration of bacteria and fungi in soil. Zentralbl. Bakteriol. Parasitenkd. Abt. 2. 116, 13-32.
11 Jensen, V. 1968. The plate count technique, pp. 158-170. In T.R.G. Gray and D. Parkinson (eds.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, UK.
12 Joseph, S.J., P. Hugenholtz, P. Sangwan, C.A. Osborne, and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69, 7210-7215.   DOI   ScienceOn
13 Kaeberlein, T., K. Lewis, and S.S. Epstein. 2002. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296, 1127-1129.   DOI
14 Kell, D.B., A.S. Kaprellyants, and A. Grafen. 1995. On pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evolution 10, 126-129.   DOI   ScienceOn
15 Kolter, R., D.A. Siegele, and A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47, 855-874.   DOI   ScienceOn
16 Kushmaro, A. and S. Geresh. 2004. Method for isolating and culturing unculturable microorganisms. International Applicatiojn Published under the Patent Cooperation Treaty (PCT), International Publication Number: WO 2004/022698 A2.
17 Leadbetter, J.R. 2003. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr. Opin. Microbiol. 6, 274-281.   DOI   ScienceOn
18 Lilburn T.G., K.S. Kim, N.E. Ostrom, K.R. Byzek, J.R. Leadbetter, and J.A. Breznak. 2001. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292, 2495-2498.   DOI
19 Madigan, M.T., J.M. Martinko, P.V. Dunlap, and D.P. Clark. 2009. Brook Biology of Microorganisms, 12th ed., Pearson Benjamin Cummings, San Francisco, CA, USA.
20 Mason, T.G. and G. Blunden. 1989. Quaternary ammonium and tertiary sulfonium compounds of algal origin as alleviators of osmotic stress. Bot. Mar. 32, 313-316.
21 McCaig, A.E., S.J. Grayston, J.I. Prosser, and L.A. Glover. 2001. Impact of cultivation on characterization of species composition of soil bacterial communities. FEMS Microbiol. Ecol. 35, 37-48.   DOI   ScienceOn
22 Miller, M.B. and B.L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165-199.   DOI   ScienceOn
23 Mochizuki, M. and T. Hattori. 1986. Kinetics of microcolony formation of a soil olitrophic bacterium, Agromonas sp. FEMS Microbiol. Ecol. 38, 51-55.   DOI   ScienceOn
24 Nadell, C.D., J.B. Xavier, and K.R. Foster. 2009. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206-224.   DOI   ScienceOn
25 Monciardini, P., L. Cavaletti, P. Schumann, M. Rohde, and S. Donadio. 2003. Conexibacterwoesii gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int. J. Syst. Evol. Microbiol. 53, 569-576.   DOI   ScienceOn
26 Mukamolova, G.V., A.S. Kaprelyants, D.I. Young, M. Young, and D.B. Kell. 1998. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95, 8916-8921.   DOI   ScienceOn
27 Mukamolova, G.V., N.D. Yanopolskaya, D.B. Kell, and A.S. Kaprelyants. 1998. On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek 73, 237-243.   DOI   ScienceOn
28 Novitsky, J.A. 1987. Microbial growth rates and biomass production in a marine sediment: evidence for a very active but mostly nongrowing community. Appl. Environ. Microbiol. 53, 2368-2372.
29 Ohno, M., I. Okano, T. Watsuji, T. Kakinuma, K. Ueda, and T. Beppu. 1999. Establishing the independent culture of a strictly symbiotic bacterium Symbiobacterium thermophilum from its supporting Bacillus strain. Biosci. Biotechnol. Biochem. 63, 1083-1090.   DOI   ScienceOn
30 Ohno, M., H. Shiratori, M.J. Park, Y. Saitoh, Y. Kumon, N. Yamashita, A. Hirata, H. Nishida, K. Ueda, and T. Beppu. 2000. Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. Int. J. Syst. Evol. Microbiol. 50, 1829-1832.   DOI
31 Olsen, R.A. and L.R. Bakken. 1987. Viability of soil bacteria: optimization of plate-counting techniques and comparisons between total counts and plate counts within different size groups. Microb. Ecol. 13, 59-74.   DOI   ScienceOn
32 Overmann, J. 2006. Principles of enrichment, isolation, cultivation and preservation of prokaryotes, pp. 80-136. In M. Doworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, and E. Stackebrandt (eds.), The Prokaryotes, 3rd ed. Vol. 1: Symbiotic Associations, Biotechnology, Applied Microbiology. Springer, New York, NY, USA.
33 Palumbo, A.V., C. Zhang, S. Liu, S.P. Scarborough, S.M. Pfiffner, and T.J. Phelps. 1996. Influence of media on measurement of bacterial populations in the subsurface. Appl. Biochem. Biotech. 57/58, 905-914.   DOI
34 Rosch, C., A. Mergel, and H. Bothe. 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol. 68, 3818-3829.   DOI   ScienceOn
35 Plugge, C.M. and A.J.M. Stams. 2002. Enrichment of thermophilic syntrophic anaerobic glutamate-degrading consortia using a dialysis membrane reactor. Microbiol. Ecol. 43, 379-387.
36 Postgate, J.R. and J.R. Hunter. 1964. Accelerated death of Aerobacter aerogenes starved in the presence of growth limiting substrates. J. Gen. Microbiol. 34, 459-473.   DOI
37 Reichenbach, H. and M. Dworkin. 1981. Introduction to the glidinh bacteria, pp. 315-327. In M.P. Starr, H. Stolp, H.G. Truper, A. Balows, and H.G. Schlegel (eds.), The Prokaryotes. A handbook on habitats, isolation, and identification of bacteria, vol. 1. Springer-Verlag, Heidelberg, Germany.
38 Sait, M., K.E.R. Davis, and P.H. Janssen. 2006. Effect of pH on the isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72, 1852-1857.   DOI   ScienceOn
39 Sait, M., P. Hugenholtz, and P.H. Janssen. 2002. Cultivation of globally-distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4, 654-666.   DOI   ScienceOn
40 Sangwan, P., X. Chen, P. Hugenholtz, and P.H. Hanssen. 2004. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70, 5875-5881.   DOI   ScienceOn
41 Sangwan, P., S. Kovac, K.E.R. Davis, M. Sait, and P.H. Janssen. 2005. Detection and cultivation of soil Verrucomicrobia. Appl. Environ. Microbiol. 71, 8402-8410.   DOI   ScienceOn
42 Schoenborn, L., P.S. Yates, B.E. Grinton, P. Hugenholtz, and P.H. Janssen. 2004. Liquid serial dilution is inferior to solid media for isolation of cultures representing the phylum level diversity of soil bacteria. Appl. Environ. Microbiol. 70, 4363-4366.   DOI   ScienceOn
43 Sexstone, A.J., N.P. Revsbech, T.P. Parkin, and J.M. Tiedje. 1985. Direct measurement oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Amer. J. 49, 645-651.   DOI   ScienceOn
44 Sorheim, R., V.L. Torsvik, and J. Goksøyr. 1989. Phenotypic divergences between populations of soil bacteria isolated on different media. Microb. Ecol. 17, 181-192.   DOI   ScienceOn
45 Shleeva, M.O., K. Bagramyan, M.V. Telkov, G.V. Mukamolova, M. Young, D.B. Kell, and A.S. Kaprelyants. 2002. Formation and resuscitation of "non-culturable" cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary. Microbiology 148, 1581-1591.   DOI
46 Simon, H.M., C.E. Jahn, L.T. Bergerud, M.K. Sliwinski, P.J. Weimer, D.K. Willis, and R.M. Goodman. 2005. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl. Environ. Microbiol. 71, 4751-4760.   DOI   ScienceOn
47 Simu, K. and A. Hagstrom. 2004. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol. 70, 2445-2451.   DOI   ScienceOn
48 Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt, and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70, 4748-4755.   DOI   ScienceOn
49 Streit, W.R. and R.A. Schmitz. 2004. Metagenomics-the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492-498.   DOI   ScienceOn
50 Sun, Z. and Y. Zhang. 1999. Spent culture supernant of Mycobacterium tuberculosis H37Ra improved viability of aged cultures of this strain and allows small inocula to initiate growth. J. Bacteriol. 181, 7626-7628.
51 Suzuki, S., S. Horinouchi, and T. Beppu. 1988. Growth of a tryptophanas-producing thermophile, Symbiobacterium thermophilum gen. nov., sp. nov., is dependent on coculture with a Bacillus sp. J. Gen. Microbiol. 134, 2353-2362.
52 Tanaka, Y., S. Hanada, A. Manome, T. Tsuchida, R. Kurane, K. Nakamura, and Y. Kamagata. 2004. Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. Int. J. Syst. Evol. Microbiol. 54, 955-959.   DOI   ScienceOn
53 Thornton, H.G. 1992. On the development of a standardized agar medium for counting soil bacteria, with especial regard to the repression of spreading colonies. Ann. Appl. Biol. 9, 241-274.
54 Tiedje, J.M. 1994. Microbioal diversity: of value to whom? ASM News 60, 524-525.
55 Waterbury, J.B. 1991. The cyanobacteria-isolation, purification, and identification, pp. 149-196. In M.P. Starr, H. Stolp, H.G. Truper, A. Balows, and H.G. Schlegel (eds.), The prokaryotes. A handbook on habitats, isolation, and identification of bacteria, vol. 1. Springer-Verlag, Heidelberg, Germany.
56 Torsvik, V., R. Sorheim, and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment connunities - a review. J. Ind. Microbiol. 17, 170-178.   DOI   ScienceOn
57 Ueda, K., H. Saka, Y. Ishikawa, T. Kato, Y. Takeshita, H. Shiratori, M. Ohno, K. Hosono, M. Wada, and T. Beppu. 2002. Development of a membrane dialysis bioreactor and its application to a large-scale culture of a symbiotic bacterium, Symbiobacterium thermophilum. Appl. Microbiol. Biotechnol. 60, 300-305.   DOI   ScienceOn
58 Wang, J., C. Jenkins, R.I. Webb, and J.A. Fuerst. 2002. Isolation of Gemmata-like and Isophaera-like planctomycete bacteria from soil and freshwater. Appl. Environ. Microbiol. 68, 417-422.   DOI   ScienceOn
59 West, S.A., S.P. Diggle, A. Buckling, A. Gardner, and A.S. Griffin. 2007. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53-77.   DOI   ScienceOn
60 Widdel, F. 1987. New types of acetate-oxidazing, sulfatereducing Dessulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148, 286-291.   DOI   ScienceOn
61 Widdel, F. and F. Bak. 1992. Gram-negative mesophilic sulfate-reducing, pp. 3352-3378. In A. Balows, H.G. Truper, M. Dworkin, W. Harder, and K.H Schleifer (eds.), The Prokaryotes. A handbook on the biology of bacteria: Ecophysiology, isolation, and identification, application, 2nd ed., vol. 4. Springer-Verlag, New York, NY, USA.
62 Winding, A., S.J. Binnerup, and J. Sørensen. 1994. Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl. Environ. Microbiol. 60, 2869-2875.
63 Winogradsky, S. 1949. Microbiologie du Sol. Problemes et Methodes. Masson, Paris, France.
64 Zengler, K., H.H. Richnow, R. Rossello-Mora, W. Michaelis, and F. Widdel. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266-269.   DOI   ScienceOn
65 Bartscht, K., H. Cypionka, and J. Overmann. 1999. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol. Ecol. 28, 249-259.   DOI   ScienceOn
66 Zengler, K., G. Toledo, M. Rappé, J. Elkins, E.J. Mathur, J.M. Short, and M. Keller. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99, 15681-15686.   DOI   ScienceOn
67 Alain, K. and J. Querellou. 2009. Cutivating the uncultured: limits, advances and future challenges. Extremophiles 13, 583-594.   DOI   ScienceOn
68 Allsopp, D., R.R. Colwell, and D.L. Hawksworth. 1995. Microbial diversity and ecosystem function. CAB International, Wallingford, UK.
69 Andrews, J.H. and R.F. Harris. 1986. r- and K-selection and microbial ecology. Adv. Microb. Ecol. 9, 99-147.
70 Balestra, G.M. and I.J. Misaghi. 1997. Increasing the efficiency of the plate count method for estimating bacterial diversity. J. Microbiol. Methods 30, 111-137.   DOI   ScienceOn
71 Batchelor, S.E., M. Cooper, S.R. Chhabra, L.A. Glover, G.S. Stewart, P. Williams, and J.I. Prosser. 1997. Cell densityregulated recovery of starved biofilm populations of ammoniaoxidizing bacteria. Appl. Environ. Microbiol. 63, 2281-2286.
72 Bremner, J.M. and L.A. Douglas. 1971. Use of plastic films for aeration on soil incubation experiments. Soil Biol. Biochem. 3, 289-296.   DOI   ScienceOn
73 Bruns, A., H. Cypionka, and J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68, 3978-3987.   DOI   ScienceOn
74 Bruns, A., U. Nubel, H. Cypionka, and J. Overmann. 2003. Effect of signal compounds and incubation conditions on the culturability of fresh-water bacterioplankton. Appl. Environ. Microbiol. 69, 1980-1989.   DOI   ScienceOn
75 Bussmann, I., B. Philipp, and B. Schink. 2001. Factors influencing the cultivability of lake water bacteria. J. Microbiol. Methods 47, 41-50.   DOI   ScienceOn
76 Calcott, P.H. and J.R. Postgate. 1972. On substrate-accelerated death in Klebsiella aerogenes. J. Gen. Microbiol. 70, 115-122.   DOI   ScienceOn
77 Camilli, A. and B.L. Bassler. 2006. Bacterial small-molecule signaling pathways. Science 311, 1113-1116.   DOI
78 Chin, K.J., D. Hahn, U. Hengstmann, W. Liesack, and P.H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl. Environ. Microbiol. 65, 5042-5049.
79 Casida, L.E. 1968. Methods for the isolation and estimation of activity of soil bacteria, pp. 97-122. In T.R.G. Gray and D. Parkinson (eds.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, UK.
80 Cayley, S., M.T. Record, and B.A. Lewis. 1989. Accumulation of 3 -(N-morpholino)-propanesulfonate by osmotically stressed Escherichia coli K-12. J. Bacteriol. 171, 3597-3602.   DOI
81 Christner, B.C., E. Mosley-Thompson, L.G. Thompson, V. Zagorodnov, K. Sandman, and J.N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144, 479-485.   DOI   ScienceOn
82 Crocetti, G.R., J.F. Banfield, J. Keller, P.L. Bond, and L.L. Blackall. 2002. Glycogen-accumulating organisms in laboratoryscale and full-scale wastewater treatment processes. Microbiology 148, 3353-3364.   DOI
83 Davis, K.E.R., S.J. Joseph, and P.H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on the culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71, 826-834.   DOI   ScienceOn
84 Davis, K.E.R., P. Sangwan, and P.H. Janssen. 2011. Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony forming soil bacteria. Environ. Microbiol. 13, 798-805.   DOI   ScienceOn
85 De Spiegeleer, P., J. Sermon, A. Lietaert, A. Aertsen, and C.W. Michiels. 2004. Source of tryptone in growth medium affects oxidative stress resistance in Escherichia coli. J. Appl. Microbiol. 97, 124-133.   DOI   ScienceOn
86 Eichorst, S.A., J.A. Breznak, and T.M. Schmidt. 2007. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73, 2708-2717.   DOI   ScienceOn
87 Eilers, H., J. Pernthaler, J. Peplies, F.O. Glöckner, G. Gerdts, and R. Amann. 2001. Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl. Environ. Microbiol. 67, 5134-5142.   DOI   ScienceOn
88 Fischer, H. 1909. Bakteriologisch-chemishe Untersuchungen. Bakteriologischer Teil. Landw. Jahrb. 38, 355-364.
89 Ensign, S.A., F.J. Small, J.R. Allen, and M.K Sluis. 1998. New roles for $CO_2$ in the microbial metabolism of a liphatic epoxides and ketones. Arch. Microbiol. 169, 179-187.   DOI   ScienceOn
90 Ferrari, B.C., S.J. Binnerup, and M. Gillings. 2005. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71, 8714-8720.   DOI   ScienceOn
91 Freeman, R., J. Dunn, J. Magee, and A. Barrett. 2002. The enhancement of isolation of mycobacteria from a rapid liquid culture system by broth culture supernate of Micrococcus luteus. J. Med. Microbiol. 51, 92-93.   DOI
92 Frohlich, J. and H. König. 2000. New techniques for the isolation of single prokaryotic cells. FEMS Microbiol. Rev. 24, 567-572.   DOI
93 Furlong, M.A., D.R. Singleton, D.C. Coleman, and W.B. Whitman. 2002. Molecular and culture-based and analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68, 1265-1279.   DOI
94 Gray, T.R.G., P. Baxby, I.R. Hill, and M. Goodfellow. 1968. Direct observation of bacteria in soil, pp. 171-197. In T.R.G. Gray and D. Parkinson (eds.), The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, UK.
95 Guan, L.L. and K. Kamino. 2001. Bacterial response to siderophore and quorum-sensing chemical signals in the seawater microbial community. BMC Microbiol. 1, 27.   DOI
96 Harris, D. and E.A. Paul. 1994. Measurements of bacterial growth rates in soil. Appl. Soil Ecol. 1, 277-290.   DOI   ScienceOn
97 Hattori, T. 1976. Plate count of bacteria in soil on a diluted nutrient broth as a culture medium. Rep. Inst. Agric. Res. Tohoku Univ. 27, 23-30.
98 Hattori, T. 1980. A note on the effect of different types of agar on plate count of oligotrophic bacteria in soil. J. Gen. Appl. Microbiol. 26, 373-374.   DOI