• 제목/요약/키워드: Detection and Tracking of Moving Objects

검색결과 105건 처리시간 0.026초

레벨 세트와 히스토그램을 이용한 이동 물체의 추적 (Tracking of Moving Objects Using Levelset and Histogram)

  • 박수형;염동훈;고기영;김두영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.137-140
    • /
    • 2002
  • This paper presents a new variational framework for detecting and tracking moving objects in image sequence. Motion detection is performed using Level Set Model. The original frame is used to provide th moving object boundaries Then, the detection and the tracking problem are addressed in a common framework that employs a inward-outward curve evolution function. This function is minimized using a gradient decent method.

  • PDF

약속된 제스처를 이용한 객체 인식 및 추적 (Object Detection Using Predefined Gesture and Tracking)

  • 배대희;이준환
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권10호
    • /
    • pp.43-53
    • /
    • 2012
  • 본 논문에서는 화면상 약속된 동작을 찾고 추적하는 알고리즘을 이용한 사용자 인터페이스를 제안한다. 현재 frame과 복수의 이전 frame간의 차영상을 이용하여 움직임 영역을 검출하고 약속된 제스처를 취하는 영역을 제어대상으로 인식한다. 이를 통하여 사용자가 장갑을 사용한다던지, 인종, 피부색등에 구애받지 않고 손동작 영역을 검출해 낼 수 있다. 또한 기존 색체 분포 추적 알고리즘을 개량하여 유사한 배경을 가로지르는 경우의 무게중심 위치의 정확성을 높였다. 그 결과 기존 피부색 인식 방법에 비해 약속된 손동작 인식률의 향상이 있었으며 기존 색체 추적 알고리즘에 비교하여 추적 인식률 향상을 확인할 수 있었다.

유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적 (Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

파티클 필터를 이용한 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적 (Specified Object Tracking in an Environment of Multiple Moving Objects using Particle Filter)

  • 김형복;고광은;강진식;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.106-111
    • /
    • 2011
  • 영상 기반의 움직이는 객체의 검출 및 추적은 실시간 감시 시스템이나 영상회의 시스템 등에서 널리 사용되어지고 있다. 또한 인간-컴퓨터 상호 작용(Human-Computer Interface)이나 인간-로봇 상호 작용(Human-Robot Interface)으로 확장되어 사용할 수 있기 때문에 움직이는 객체의 추적 기술은 중요한 핵심 기술 중에 하나이다. 특히 다중 객체의 움직임 환경에서 특정 객체의 움직임만을 추적할 수 있다면 다양한 응용이 가능할 것이다. 본 논문에서는 파티클 필터를 이용한 특정 객체의 움직임 추적에 관하여 연구 하였다. 실험 결과들로부터 파티클 필터를 이용한 단일 객체의 움직임 추적과 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적에서 좋은 결과를 얻을 수 있었다.

시공간 영상분할을 이용한 이동 및 이동 중 정지물체 검출 (Detection of Objects Temporally Stop Moving with Spatio-Temporal Segmentation)

  • 김도형;김경환
    • 한국통신학회논문지
    • /
    • 제40권1호
    • /
    • pp.142-151
    • /
    • 2015
  • 본 논문에서는 이동 카메라 환경에서 이동 및 이동 중 정지물체를 검출하기 위한 방법을 제안한다. 이동 중에 일시적으로 정지한 물체는 검출 결과의 응용관점에서 볼 때 이동물체의 검출만큼이나 중요한데, 기존의 이동물체 검출 방법들은 이들을 배경과 구분하지 못하는 한계를 갖는다. 이러한 문제를 해결하기 위해 제안하는 방법에서는 이동 가능성 큐, 위치 가능성 큐, 그리고 색 분포 유사성 큐를 정의하여 이동물체 검출 및 지속적인 추적에 이용한다. 그래프 컷 알고리즘은 세 개의 큐를 결합하여 시공간 영상분할을 수행함으로써 이동 및 이동 중 정지물체를 검출한다. 제안하는 방법은 이동물체 뿐 아니라 이동 중 정지물체에 대해서도 검출이 가능함을 실험을 통해 증명하였다.

움직임 에너지를 이용한 동적 물체 추적 시스템의 실시간 구현 (Real-time Implementation of a DSP System for Moving Object Tracking Based on Motion Energy)

  • 류성희;김진율
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.365-368
    • /
    • 2001
  • This work describes a real-time method, based on motion energy detection, for detecting and tracking moving object in the consecutive image sequences. The motion of moving objects is detected by taking the difference of the two consecutive image frames. In addition an edge information of the current image is utilized in order to further increase the accuracy of detection. We can track the moving objects continuously by detecting the motion of objects from the sequence of image frames. A prototype system has been implemented using a TI TMS320C6201 EVM fixed-point DSP board, which can successfully track a moving human in real-time.

  • PDF

실시간 배경갱신 및 이를 이용한 객체추적 (Real time Background Estimation and Object Tracking)

  • 이완주
    • 정보학연구
    • /
    • 제10권4호
    • /
    • pp.27-39
    • /
    • 2007
  • Object tracking in a real time environment is one of challenging subjects in computer vision area during past couple of years. This paper proposes a method of object detection and tracking using adaptive background estimation in real time environment. To obtain a stable and adaptive background, we combine 3-frame differential method and running average single gaussian background model. Using this background model, we can successfully detect moving objects while minimizing false moving objects caused by noise. In the tracking phase, we propose a matching criteria where the weight of position and inner brightness distribution can be controlled by the size of objects. Also, we adopt a Kalman Filter to overcome the occlusion of tracked objects. By experiments, we can successfully detect and track objects in real time environment.

  • PDF

지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거 (An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance)

  • 응웬탄빈;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제17권4호
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거 (Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System)

  • 이영숙;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.574-578
    • /
    • 2009
  • 정지 영상이나 비디오 영상 시퀀스에서 배경 영상으로부터 움직이는 관심 물체를 구별하기 위한 실시간 물체 검출은 물체의 위치 추적과 인식에 있어 필수적인 단계이다. 물체 분할 후에 그림자 영역이 움직이는 물체 영역에 포함되어지기 때문에 그림자는 물체의 일부분 혹은 움직이는 물체로 오분류될 수 있다. 이러한 이유로 그림자 제거 알고리즘은 움직이는 물체 검출 및 추적 시스템의 결과에 중요한 역할을 한다. 이 문제점들을 해결하기 위해 본 논문에서는 움직이는 물체의 특징과 색상공간에서 그림자의 특징에 기반을 둔 정확한 물체 검출과 그림자 제거 알고리즘을 제안한다. 실험결과는 제안 알고리즘이 실험 영상에서 물체 검출과 그림자 제거에 대해 효과적인 것을 알 수가 있다.

  • PDF