• 제목/요약/키워드: Design power

검색결과 17,162건 처리시간 0.037초

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

Design of an LCL-Filter for Three-Parallel Operation of Power Converters in Wind Turbines

  • Jeong, Hae-Gwang;Yoon, Dong-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.437-446
    • /
    • 2013
  • This paper proposes a design scheme for an LCL-filter used for the three-parallel operation of the power converters in high-capacity wind turbines. The designs of the power devices and grid connected filter are difficult due to the high level voltages and currents in huge-capacity wind turbines. To solve these problem, this paper presents three-parallel operation and LCL-filter design techniques optimized by parallel operation. Furthermore, the design of an inverter side inductance of the LCL-filter is discussed in detail considering the switching modulation method. Simulation and experimental results demonstrate the validity of the designed filter and wind turbines.

A Carge-discharge System of a Solar-Electric Vehicle (태양광-전기자동차의 충전·방전 시스템에 관한 연구)

  • Sim, Hansub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제18권1호
    • /
    • pp.78-84
    • /
    • 2019
  • Design of an electric power system on the solar-electric vehicle is very important because sunlight intensity is changed by weather conditions and road environments. Power output of solar module on the vehicle being changed by unsteady sunlight intensity. In this paper, design method of an electric power system are proposed to generate steady electric power output. The test results shows the electric power system are effective because the solar-electric vehicle have steady driving speed under unsteady sunlight conditions.

Current-Mode Circuit Design using Sub-threshold MOSFET (Sub-threshold MOSFET을 이용한 전류모드 회로 설계)

  • Cho, Seung-Il;Yeo, Sung-Dae;Lee, Kyung-Ryang;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • 제8권3호
    • /
    • pp.10-14
    • /
    • 2013
  • In this paper, when applying current-mode circuit design technique showing constant power dissipation none the less operation frequency, to the low power design of dynamic voltage frequency scaling, we introduce the low power current-mode circuit design technique applying MOSFET in sub-threshold region, in order to solve the problem that has large power dissipation especially on the condition of low operating frequency. BSIM 3, was used as a MOSFET model in circuit simulation. From the simulation result, the power dissipation of the current memory circuit with sub-threshold MOSFET showed $18.98{\mu}W$, which means the consumption reduction effect of 98%, compared with $900{\mu}W$ in that with strong inversion. It is confirmed that the proposed circuit design technique will be available in DVFS using a current-mode circuit design.

Analysis and comparison of the 2D/1D and quasi-3D methods with the direct transport code SHARK

  • Zhao, Chen;Peng, Xingjie;Zhang, Hongbo;Zhao, Wenbo;Li, Qing;Chen, Zhang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.19-29
    • /
    • 2022
  • The 2D/1D method has become the mainstream of the direct transport calculation considering the balance of accuracy and efficiency. However, the 2D/1D method still suffers from stability issues. Recently, a quasi-3D method has been proposed with axial Legendre expansion. Analysis and comparison of the 2D/1D and quasi-3D method is conducted in theory from the equation derivation. Besides, the C5G7 benchmark, the KUCA benchmark and the macro BEAVRS benchmark are calculated to verify the theory comparisons of these two methods with the direct transport code SHARK. All results show that the quasi-3D method has better stability and accuracy than the 2D/1D method with worse efficiency and memory cost. It provides a new option for direct transport calculation with the quasi-3D method.

Design of a Boradband Power Divider by Distributed Network Synthesis (분포정수 회로합성에 의한 광대역 전력분배기 설계)

  • Kim, Nam-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제9권5호
    • /
    • pp.1134-1138
    • /
    • 2008
  • In this paper, the synthesis of distributed impedance transformers is presented that is essential for power divider design, whereby a broadband power divider is designed. Transfer functions of distributed transformers are synthesized with Chebyshev approximation, and their element values are calculated for various minimum insertion losses(MIL) and ripples. Desired performance of transformers is obtained by optimizing MIL's and ripples of a transfer function. As an application example, a four-way power divider is designed that operates over 2 to 8GHz frequency range. Experimental results are shown to approach the design performance, so transformer design by distributed network synthesis proves to be useful to power divider design.

Asynchronous Circuit Design Combined with Power Switch Structure (파워 스위치 구조를 결합한 비동기 회로 설계)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제21권1호
    • /
    • pp.17-25
    • /
    • 2016
  • This paper proposes an ultra-low power design methodology for asynchronous circuits which combines with power switch structure used for reducing leakage current in the synchronous circuits. Compared to existing delay-insensitive asynchronous circuits such as static NCL and semi-static NCL, the proposed methodology provides the leakage power reduction in the NULL mode due to the high Vth of the power switches and the switching power reduction at the switching moment due to the smaller area even though it has a reasonable speed penalty. Therefore, it will become a low power design methodology required for IoT system design placing more value on power than speed. In this paper, the proposed methodology has been evaluated by a $4{\times}4$ multiplier designed using 0.11 um CMOS technology, and the simulation results have been compared to the conventional asynchronous circuits in terms of circuit delay, area, switching power and leakage power.

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.

Optimal Design Considerations of a Bus Converter for On-Board Distributed Power Systems

  • Abe, Seiya;Hirokawa, Masahiko;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.447-455
    • /
    • 2009
  • The power supply systems, which require low-voltage / high-current output has been changing from the conventional centralized power system to a distributed power system. The distributed power system consists of a bus converter and POL. The most important factor is the system stability in bus architecture design. The overlap between the output impedance of a bus converter input impedance of POL causes system instability and has been an actual problem. By increasing the bus capacitor, the system stability can be easily improved. However, due to limited space on the system board, the increasing of bus capacitors is impractical. An urgent solution of this issue is strongly desired. This paper presents the output impedance design for on-board distributed power system by means of three control schemes of a bus converter. The output impedance peak of the bus converter and the input impedance of the POL are analyzed and then conformed experimentally for stability criterion. Furthermore, the design process of each control schemes for system stability is proposed.

Development of a structure analytic hierarchy approach for the evaluation of the physical protection system effectiveness

  • Zou, Bowen;Wang, Wenlin;Liu, Jian;Yan, Zhenyu;Liu, Gaojun;Wang, Jun;Wei, Guanxiang
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1661-1668
    • /
    • 2020
  • A physical protection system (PPS) is used for the protection of critical facilities. This paper proposes a structure analytic hierarchy approach (SAHA) for the hierarchical evaluation of the PPS effectiveness in critical infrastructure. SAHA is based on the traditional analysis methods "estimate of adversary sequence interruption, EASI". A community algorithm is used in the building of the SAHA model. SAHA is applied to cluster the associated protection elements for the topological design of complicated PPS with graphical vertexes equivalent to protection elements.