• Title/Summary/Keyword: Design of Generator

Search Result 2,022, Processing Time 0.029 seconds

3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power

  • Kim, J.H.;Park, S.I.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

Optimal Design and Test of Fuel-Rich Gas Generator

  • Lee, Changjin;Kwon, Sun-Tak
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.560-564
    • /
    • 2004
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton$_{f}$ in thrust with RP-1/Lox propellant. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching required by turbopump system. Design variables were selected as total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. Also, the combustion test was conducted to evaluate the performance of injector and combustion chamber. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.r.

  • PDF

The PLD Circuit Design of Pattern Generator for the Logical Inspection of Logical Defection (논리결함 검사를 위한 Pattern Generator의 PLD 회로 설계)

  • 김준식;노영동
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • In this paper, we design the pattern generator circuits using PLDs(Programmable Logic Devices). The pattern generator is the circuit which generates the test pattern signal for the inspection of logical defects of semiconductor products. The proposed circuits are designed by the PLD design tool(MAX+ II of ALTERA). Also the designed circuits are simulated for the verification of the designed ones. The simulation results have a good performance.

  • PDF

Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.273-281
    • /
    • 2014
  • This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.

A Study of a Manual Generator System for 50Wh Battery Charge (50Wh급 배터리 충전을 위한 휴대용 자가발전시스템 연구)

  • Lee, Ji-Young;Koo, Dae-Hyun;Han, Choong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.223-230
    • /
    • 2012
  • This paper deals with an design of axial flux electric machine which is a key element for a compact size in a portable and manual generator system. It is expected that the generator system with an axial flux electric machine is more light and has higher efficiency than other types of generator systems. And it is used the soft magnetic composite core instead of silicon steel core in the axial flux electric machine for more compact size. The weight and efficiency of the generator system are the main keys to select the value of design variables. In this paper, the overall design process to meet the design goals, and the design results are presented with experiment results.

Design of Single/Multiband Impulse Generator Using SRD for UWB(Ultra Wideband) Technique (SRD를 이용한 UWB 기술용 단일/멀티밴드 Impulse Generator의 설계)

  • Kim, Ki Nam;Kim, Ihn Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, an impulse generator for UWB(Ultra Wide-band) technique with great possibility to be adopted as a next generation indoor WLAN(Wireless Local Area Network) has been designed by using SRD(Step Recovery Diode). Design goal is to design an impulse generator with simple structure, low cost, small size, and high performance. The impulse generator satisfied by FCC's regulation ( frequency range: 3.1~10.6 GHz, limit of power level: -41.25 dBm ) has been simulated by using ADS(Advanced Design System) which is the trade name of the Agilent Technologies. The output power of the impulse generator has been explained separately for single and multi band purposes, respectively.

  • PDF

A Study on Design of IED for Generator Protection Panel (발전기보호반을 위한 IED의 설계에 관한 연구)

  • Park, Chul-Won;Park, Sung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • A large generator is an important role in transferring an electric power to power system. The IEDs of large generator often use microprocessor technology to obtain a digital relay system with a wide range of measuring, protection, control, monitoring, and communication functions. However, all generator protection and control systems in Korea imported from abroad and are being operated. In order to reduce the large expense and improve the reliable operation, development of generator protection and control system by domestic technology is required. This paper deals with the design of the IED of generator protection panel for development of generator protection and control system. The major emphasis of the paper will be on the description of hardware and signal processing test results and measurement accuracy of the prototype IED. By developing of generator IED based on DSP and microprocessor, replacement of the generator protection panel imports are expected to be effective.

Mechanical Error Analysis and Tolerance Design of A Four-Bar Path Generator With Lubricated Joints (윤활특성을 고려한 사절경로 발생기구의 기계적 오차해석 및 공차설계)

  • Choi, Jin-Ho;Lee, S.J;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.327-336
    • /
    • 1997
  • This paper addresses an analytical approach to the mechanical error analysis and tolerance design of a four-bar path generator with lubricated joints. The mobility method is applied to consider lubrication effects and the four-bar path generator is stochastically modeled by using the clearance vector model for methanical error analysis. To show the validity of the proposed method, the mechanical errors obtained by applying the method to a four-bar path generator are compared with those by Monte Carlo simulation. Based on this analytical method, an optimal tolerance design problem is formulated and solved for the four-bar path generator.

Design and testing of a low subsonic wind tunnel gust generator

  • Lancelot, Paul M.G.J.;Sodja, Jurij;Werter, Noud P.M.;Breuker, Roeland De
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.125-144
    • /
    • 2017
  • This paper summarises the design of a gust generator and the comparison between high fidelity numerical results and experimental results. The gust generator has been designed for a low subsonic wind tunnel in order to perform gust response experiments on wings and assess load alleviation. Special attention has been given to the different design parameters that influence the shape of the gust velocity profile by means of CFD simulations. Design parameters include frequency of actuation, flow speed, maximum deflection, chord length and gust vane spacing. The numerical results are compared to experimental results obtained using a hot-wire anemometer and flow visualisation by means of a tuft and smoke. The first assessment of the performance of the gust generator showed proper operation of the gust generator across the entire range of interest.