Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.3.273

Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines  

Chung, Dae-Won (Department of Electrical Engineering, Honam University)
You, Yong-Min (Department of Electrical Engineering, Honam University)
Publication Information
Abstract
This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.
Keywords
axial-flux permanent-magnet (AFPM); coreless stator; direct-drive wind power generator; low speed; design optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. J. Gieras, R. J. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, Springer, 2nd edition, 304 (2008).
2 E. Muljadi, C. P. Butterfield, and Yih-huie Wan, IEEE Trans. Ind. Appl. 35, 831 (1999).   DOI   ScienceOn
3 R. J. Wang, M. J. Kamper, K. V. D. Westhuizen, and J. F. Gieras, IEEE Trans. Magn. 41, 55 (2005).   DOI   ScienceOn
4 U. K. Madawala and J. T. Boys, IEEE Trans. Magn. 41, 2384 (2005).   DOI   ScienceOn
5 H. C. Lovatt, V. S. Ramsden, and B. C. Mecrow, Proc. Inst. Electr. Eng. Electr. Power Appl. 145, 402 (1998).   DOI   ScienceOn
6 R. J. Hill-Cottingham, P. C. Coles, J. F. Eastham, F. Profumo, A. Tenconi, and G. Gianolio, Proc. 36th IEEE Ind. Appl. Conf. 1634 (2001).
7 R. J. Hill-Cottingham, P. C. Coles, J. F. Eastham, F. Profumo, A. Tenconi, and G. Gianolio, Proc. 37th IEEE Ind. Appl. Conf. 1274 (2002).
8 T. J. E. Miller, Design of Brushless Permanent Magnet Machines, University of Glasgow, UK, Magna Physics Publishing and Clarendon Press, Oxford (1994).
9 F. Caricchi, F. Crescimbini, and E. Santini, IEEE Trans. Ind. Appl. 31, 1062 (1995).   DOI   ScienceOn
10 W. Fei, P. C. K. Luk, J. Jinupun, Proc. IET Power Electronics, Machines and Drives Conf. 623 (2009).
11 D.-W. Chung, Trans. of KIEE 61, 1820 (2012).
12 K. C. Kim and S. K. Lee, Maxwell 2D/3D Training Manual for User Applications, Ansoft Co. User Group, Seoul, Korea, 1234 (2006).
13 J. F. Gieras, and M. Wing, New York: Marcel Dekker Inc. 242 (1997).
14 Maxim Naumov, Incomplete-LU and Cholesky Preconditioned Iterative Methods Using CUSPARSE and CUBLAS, NVIDIA CUSPARSE and CUBLAS Libraries, http://www.nvidia.com/object/cuda develop.html
15 N. F. Lombard and M. J. Kamper, IEEE Trans. Energy Conversion 14, 1051 (1999).   DOI   ScienceOn
16 A. Di Napoli, F. Caricchi, F. Crescimbini, and G. Noia, Proc. International Conference on the Evolution and Modern Aspects of Synchronous Machine August (1991).
17 E. Spooner and B. J. Chalmers, IEE Proc. B 139, 497 (1992).
18 H. G. Kim, Y. T. Seo, and D. K. Lee, Proc. ICEE2002 941 (2002).
19 R. J. Hill-Cottingham, P. C. Coles, J. F. Eastham, F. Profumo, A. Tenconi, and G. Gianolio, IEEE Trans. Magn. 38, 3003 (2002).   DOI   ScienceOn
20 R. Wang, H. Mohellebi, T. J. Flack, M. J. Kamper, J. Buys, and M. Feliachi, IEEE Trans. Magn. 38, 1357 (2002).   DOI   ScienceOn