• Title/Summary/Keyword: Design Ultimate Load

Search Result 505, Processing Time 0.044 seconds

A Study on the Evaluation Methods of the Load-Carrying Capacity of PSC I Type Girder Considering Material Nonlinear (재료 비선형을 고려한 PSC I형 거더교의 내하력평가 기법에 관한 고찰)

  • 심종성;김규선;문도영;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.187-192
    • /
    • 2003
  • Nowadays, It has adapted both Ultimate Strength Design(USD) and Allowable Stress Design(ASD) Method evaluating load-carrying capacity of PSC I Type Girder Bridge. But it has confused because the each method has brought some different results. This study shows some results of loading test of the PSC I type Girder Bridge and analyzed the structural behavior by FEM analysis considering material nonlinear. Parametric study of effective prestress of post tendon is performed and compared to results of loading test.

  • PDF

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Ha Sang Hoon;Kim Jung Kyu;Hwang Keum Sik;Eo Seok Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • This paper presents flexural test results of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under static loading to investigate the effects of reinforcement ratio and compressive ,strength of concrete on cracking, deflection, ultimate capacity and mode of failure, This study attempts to establish a theoretical basis for the development of simple and rational design guideline. Test results show that ultimate capacity increases as the reinforcement ratio and concrete strength increase. The ultimate capacity increased up to $8\%-25\%$ by using high strength concrete. The deflection at maximum load of GFRP reinforced beams was about three times that of steel reinforced beams. For GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength -estimates.

  • PDF

Design of Drilled Shafts Foundation by LRFD in Incheon Bridge Project (인천대교 민자구간의 대구경 현장타설 말뚝기초의 LRFD 설계 적용 사례)

  • Kim, Jeong-Hwan;Lee, Hyun-Gun;Shin, Hyun-Yang;Youn, Man-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.551-561
    • /
    • 2006
  • Incheon bridge project is to construct total 12km long bridges on the sea consist of 800m span length cable stayed bridge, approach bridge and viaduct bridge based on LRFD design specification. To design pile foundations by RCD of each bridge unit, total 4 number of preliminary full scale pile load tests with Osterberg cell method were carried out on the piles for testing. The test load was planned to more than the expected design ultimate capacity and about 29,000tons maximum load was recorded. From the interpretation of test results, design parameters are evaluated and applied to the design. Preliminary pile load test plan and detailed execution of pile load tests are introduced and summarized. The resistance factors are presented for pile design of Incheon Bridge Project in LRFD considering variation of ground conditions and number of test piles.

  • PDF

The Analysis of Collapse Load of Thick Pressure Cylinder under External Hydrostatic Pressure (외압을 받는 두꺼운 원통형 내압용기의 붕괴하중 해석)

  • Lee, Jae-Hwan;Park, Byoungjae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.175-186
    • /
    • 2019
  • Number of studies on the buckling of thin cylindrical pressure vessels, such as submarine pressure hull and pipe with a large ratio of diameter/thickness, have been carried out in the naval and ocean engineering. However, research about thick cylinder pressure vessel has not been active except for the specific application in nuclear area. There are not many papers for the estimation of buckling and ultimate load capacity of thick cylinders for the deep sea usage. Thus, it is important to understand the theoretical bases of the buckling and collapse process and the derivation process of such loads for the proper design and structural analysis. The objective of this study is to survey the collapse behavior, to analyse and clarify the derivation procedure and to estimate the ultimate collapse load for thick cylinder by analyzing relevant books and papers. It is found that the yielding begins at the internal surface of the thick cylinder and plasticity develops from the internal surface to the external surface to generate collapse. Also the initial imperfection of cylinder develops flattening and consequently accelerates buckling and finally ultimate collapse. By comparing the collapse loads of aluminum thick cylinder by applying equations herein, it is shown that the equations analyzed are appropriate to obtain collapse load for thick cylinder.

Comparison of Bearing Capacity Equations for Rock Socketed Drilled Shalt Based on the Results of Static Pile Load Test (정재하시험을 통해 산출되는 현장타설말뚝의 지지력이론식 비교연구)

  • 천병식;황성식;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.333-340
    • /
    • 2003
  • In Korea, drilled shaft are generally socketed into rock. Driven pile has environmental problems such as vibration and noise. Therefore, applications of the drilled shaft are increasing in Korea. In this paper, static load test data of the rock socketed drilled shaft at Gwangandaero and Suyeong 3hogyo are analyzed. The bearing capacities from field test data and theoretical formula are compared and analyzed. From this study, design approaches for drilled shafts in Korea are examined and several suggestions are proposed.

  • PDF

Probabilistic Analysis of Design Live Loads on A Refrigeration Store (냉동 창고 상시 적재하중에 관한 확률론적 연구)

  • Kim, Dai-Ho;Jeong, Jae-Hun;Won, Young-SuI;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.109-120
    • /
    • 2001
  • Live load data were collected with a systematic manner from a survey of a refrigeration stores. Using the collected floor live load survey data, the basic statistics, a histogram of the uniformly distributed loads, and the equivalent uniformly distributed loads are computed for various structural members. Based on the above results, the maximum values of a combined live loads during the design life have been estimated and compared with current design live loads. The ultimate goals of this study are to develop probabilistic live load models to analyze survey data of domestic refrigeration stores, and to propose design live loads for structural types.

  • PDF

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint (거셋플레이트-원형강관 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Shin, Kyung-Jae;Choi, Hyung-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.523-533
    • /
    • 2011
  • The demand for the circular hollow section (CHS) has been increasing due to its structural advantage in long-span structures and high-rise buildings. There are not enough researches on the CHS structure, though. The behavior of the gusset plate CHS joint, to predict the ultimate strength, is not easy to predict because the load deflection curve does not show consistency. Therefore, in this study, experiments and finite element analysis (FEA) were carried out to determine the ultimate strength according to the proposed ultimate deformation limit. Finally, a reasonable ultimate strength formula was proposed through comparisons with other design guides.

An Assessment Study for Design Load of a Small Wind Turbine (소형풍력발전기의 설계하중 평가 연구)

  • Hyun, Seung-Gun;Kim, Keon-Hoon;Huh, Jong-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.48-53
    • /
    • 2011
  • In this study, it is to verify the applicability for a simplified model(IEC61400-2, Design Require-ments for Small Wind Turbines, 2006-03) is the international standard is used to the structural design. In the design process of a wind turbine, the safety of a designed wind turbine is one of the most important factors. The simplified model can be used to determine the design load for small wind turbines. So, this paper has been re-evaluated a small wind turbine design loads that produced already. As a result, the material characteristic value(Rchar) of Blade, Rotor shaft and the tower are $90E6[N/m^2]$, $441E6[N/m^2]$ and $94E6[N/m^2]$. Therefore, the value of the applied safety factor to each part of the survival probability of 95% are satisfied.

  • PDF

An Indeterminate Strut-Tie Model for Prestressed Concrete Beams (프리스트레스트 콘크리트 보의 부정정 스트럿-타이 모델)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.801-814
    • /
    • 2015
  • In this study, a statically simple indeterminate strut-tie model is proposed for the rational analysis and design of simply supported prestressed concrete beams by reflecting all characteristics of nonlinear structural behavior and load transfer mechanisms. In addition, a load distribution ratio that allows to transform the proposed indeterminate strut-tie model to a determinate model is also suggested to help structural designers conduct the structural analysis and design of simply supported prestressed concrete beams by using the strut-tie model method of current design codes. For verifying of the validity of the proposed model and load distribution ratio, the ultimate strengths of 47 simply supported prestressted concrete beams tested to failure were estimated and the results were compared with those by the strut-tie model methods of current design codes.