• Title/Summary/Keyword: Design Structure Matrix

Search Result 429, Processing Time 0.033 seconds

Characterization of Optical Design for Optical MEMS (Optical MEMS 응용을 위한 광학 설계)

  • Eom, Yong-Sung;Park, Heung-Woo;Park, Jun-Hee;Choi, Byung-Seok;Lee, Jong-Hyun;Yun, Ho-Kyung;Choi, Kwang-Seung;Moon, Jong-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.193-197
    • /
    • 2003
  • As one of the core technologies in the field of the optical communication with WDM, the optical cross connector with movements of micro mirrors is getting important day by day. The packaging structure of 2-dimensional NxN MOEMS switch should be determined by the harmonization of the following items such as the geometrical compatability between optical and structural components, the characteristics of optical input and output parts with device, and the electrical performance for the operation of micro mirrors. Therefore, the packaging process could be defined as the integrated technology completed by the optical and electrical science and the material science for the understanding of its thermo-mechanical properties with packaging materials. In the present study, the harmonization between the optical and structural components as well as the optical characteristics of lens system used will be investigated.

  • PDF

Compact Dual-Band Bandpass Filter Using Two Dual-Mode Resonators (두 개의 이중 모드 공진기를 이용한 소형 이중 대역 통과 필터)

  • Kim, Kyoung-Keun;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1447-1453
    • /
    • 2010
  • In this paper, the design and the fabrication of dual-band bandpass filter using two dual-mode resonators is presented. Dual-mode resonator using a short stub is miniaturized by inter-digital capacitor and stepped impedance. Two dual mode resonators are designed to have different resonant frequencies, one for the lower passband and the other for the upper passband. Transmission zero is positioned at low or high rejection bands with a sharp skirt characteristic. Dual-band operation can be achieved using dual feeding structure. For WLAN, the proposed filter at 2.45/5.25 GHz is designed and fabricated. The size of the filter is as compact as 1$10.83\;mm{\times}5.3\;mm$.

Global Health Project for Maternal Child Health in a Developing Country: Case Study in Tigray, Ethiopia (저개발국 모자보건 수준 향상을 위한 국제보건사업 전략 : 에티오피아 티그라이주 사례를 중심으로)

  • Bang, Kyung-Sook;Lee, Insook;Park, Young-Sook;Chae, Sun-Mi;Kang, Hyunju;Yu, Juyoun;Park, Ji-Sun;Oh, Sang-Jun
    • Perspectives in Nursing Science
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Purpose: The purpose of this study was to demonstrate a two-year global health project to improve maternal and child health (MCH) in Ethiopia. Methods: This is a descriptive case study. The target area is Kilte Awlaelo Woreda in Tigray Regional State, Ethiopia. A baseline survey was conducted to identify the needs of community residents and health care professionals. A MCH program was developed according to a project design matrix that included: infrastructure renovation of health centers; continuing education for midwives, nurses, and health extension workers (HEWs); and improvement of residents' MCH awareness. Project evaluation will examine the structure, process, and outcomes of the program. Results: The baseline survey showed low rates of family planning (31%) and antenatal and postnatal care use (36.1% and 69%, respectively). The institutional birth rate was 13.5%. Midwives and nurses received 2~4 educational programs about family planning and perinatal care. HEWs were also given practical education. Water and electrical infrastructure of all five health centers in the Kilte Awlaelo Woreda were renovated. Additionally, medical supplies and equipment were provided. Community health education on perinatal care, family planning, and personal hygiene was presented. Conclusion: This study highlights the role of nursing in global health and provides basic information on the development and outcomes of the global health project.

  • PDF

Design of an Automatic Generation System for Cycle-accurate Instruction-set Simulators for DSP Processors (DSP 프로세서용 인스트럭션 셋 시뮬레이터 자동생성기의 설계에 관한 연구)

  • Hong, Sung-Min;Park, Chang-Soo;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.931-939
    • /
    • 2007
  • This paper describes the system which automatically generates instruction-set simulators cores using the SMDL. SMDL describes structure and instruction-set information of a target DSP machine. Analyzing behavioral information of each pipeline stage of all instructions on a target ASIPS, the proposed system automatically generates a cycle-accurate instruction set simulator in C++ for a target processor. The proposed system has been tested by generating instruction-set simulators for ARM9E-S, ADSP-TS20x, and TMS320C2x architectures. Experiments were performed by checking the functions of the $4{\times}4$ matrix multiplication, 16-bit IIR filter, 32-bit multiplication, and the FFT using the generated simulators. Experimental results show the functional accuracy of the generated simulators.

The Study on the Improvement of Antireflection Coating Efficiency According to the Angle of Incidence (입사각에 따른 반사방지막 성능 개선에 관한 연구)

  • Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4131-4136
    • /
    • 2015
  • This paper compares and calculates more precisely the averaged reflectance of antireflection coating with different structure of single and 6 layer assuming the incident angle of light changing from $8^{\circ}$ to $60^{\circ}$ not like normal incidence as usual case. The reflectivity of AR coating of 6 layers with 180 nm thickness having index profile suggested as linear and quintic function and single layer with same thickness having even index are calculated and compared, when the wavelength of incident light ranges from 400 nm to 1200 nm. As the results the AR coating with 6 layers having quintic(linear) function index profile shows the lower reflectance about 11.6 %(14.6 %) than other index profiles, which is approximately 8 % lower reflectance compared with single layer case(about 19.6 %). This results could be applied for the better antireflection coating design applying to optical devices and filters.

Application of risk evaluation and safety management system in urban deep tunnelling (도심지 대심도 터널에서의 리스크 평가 및 안전관리시스템 적용)

  • Moon, Joon-Shik;Jeon, Kichan;Kim, Younggeun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.725-744
    • /
    • 2022
  • As the construction of infrastructure using the underground tunnel in urban area have been rapidly increased, various accidents and collapses of tunnel including structure have been occurred in deep urban tunnelling. The concern and worry relating to the risk and safety of the tunnel during excavation is becoming the key issues in deep urban tunnelling. In this study, it was conducted for deep urban tunnel at GTX (Great Train Express) line which was located in Seoul metropolitan area to determine the risk characteristics for tunnel according to urban tunnelling. Also, it was reviewed the risk analysis and evaluation of the tunnel, shaft and station. And after a review of risk analysis and evaluation for risk register and hazard identification by using a risk matrix method, safety management of the tunnel according to excavation was evaluated to be secured. This study is expected to be applied as useful approach in deep urban tunnelling if you need to review the risk and safety management system of tunnel according to mitigation measures in complex urban tunnelling.

A Study on the Analytical Model of Shear Wall Considering the Current Status of Structural Design (구조설계실무 현황을 고려한 전단벽 해석모형에 관한 고찰)

  • Jung, Sung-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.3-10
    • /
    • 2018
  • While computer environments have been dramatically developed in recent years, as the building structures become larger, the structural analysis models are also becoming more complex. So there is still a need to model one shear wall with one finite element. From the viewpoint of the concept of FEA, if one shear wall is modeled by one finite element, the result of analysis is not likely accurate. Shear wall may be modelled with various finite elements. Among them, considering the displacement compatibility condition with the beam element connected to the shear wall, plane stress element with in-plane rotational stiffness is preferred. Therefore, in order to analyze one shear wall with one finite element accurately, it is necessary to evaluate finite elements developed for the shear wall analysis and to develop various plane stress elements with rotational stiffness continuously. According to the above mentioned need, in this study, the theory about a plane stress element using hierarchical interpolation equation is reviewed and stiffness matrix is derived. And then, a computer program using this theory is developed. Developed computer program is used for numerical experiments to evaluate the analysis results using commercial programs such as SAP2000, ETABS, PERFORM-3D and MIDAS. Finally, the deflection equation of a cantilever beam with narrow rectangular section and bent by an end load P is derived according to the elasticity theory, and it is used to for comparison with theoretical solution.

Design and Characterization of Low Viscosity Epoxy Based on Flame Retardant Phosphorus Epoxy (난연성 인계 에폭시를 기반으로 한 저점도 에폭시 설계 및 특성 분석)

  • Park, Jun-Seong;Woo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.449-455
    • /
    • 2021
  • Composite materials are substances that are configured to have excellent physical properties by combining the properties of a single substance, and are in the limelight as materials that exceed the performance of metals and polymers. However, it has the disadvantages of long cycle time and high unit price, and much research is being performed to overcome these disadvantages. In this study, we developed an epoxy resin curing agent that can shorten the time required for mass production of composite materials, and tried to expand the applicability of objections by imparting flame retardancy. The epoxy resin used as a basic substance utilized two types of bisphenol F and resorcinol structure, which was further modified using 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) to impart flame retardancy. Triethylphosphate (TEP) and bis [(5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl)methyl] methyl phosphonate P,P'-dioxide (FR-001) were used as additives, seven kinds of compositions were blended, thermal characteristics (gelation time, glass transition temperature) and flame retardant performance were evaluated. We successfully developed an epoxy matrix that can be applied to high pressure resin transfer molding (HP-RTM) process.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.