• Title/Summary/Keyword: Design Sensitivity Analysis(DSA)

Search Result 35, Processing Time 0.026 seconds

Global Acoustic Design Sensitivity Analysis using Direct BEM and Continuum DSA (직접 경계요소법과 연속계 설계민감도 해석법을 이용한 소음 설계 민감도 해석)

  • 왕세명;이제원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.81-87
    • /
    • 1998
  • In this paper, a global acoustic design sensitivity analysis (DSA) of field point pressure with respect to structural sizing design variables is developed. Firstly acoustic sensitivity is formulated and implemented numerically. And it is combined with continuum structural sensitivity to obtain the global acoustic, design sensitivity. For this procedure, GASA (global acoustic design sensitivity analyzer) has been developed. A half scale of automobile cavity model is considered in this paper. In order to confirm accuracy of the results of global acoustic DSA obtained by GASA, it is compared with the result of central finite difference method. In order to reduce computation time, Rayleigh approximated solution is evaluated and compared with the solution which used every nodal velocities. Also the acoustic optimization procedure is performed using design sensitivities. From these numerical studies, it can be shown that global acoustic DSA is a useful tool to improve acoustic problems.

  • PDF

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems (열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계)

  • 김민근;조선호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF

Boundary-Based Shape Design Sensitivity Analysis of Elastostatics Problems (정탄성학 문제에서 경계 기반 형상설계 민감도 해석)

  • Won Jun-Ho;Choi Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.149-156
    • /
    • 2006
  • A boundary-based design sensitivity analysis(DSA) technique is proposed for addressing shape optimization issues in the elastostatics problems. Sensitivity formula is derived based on the continuum formulation in a boundary integral form, which consists of the boundary solutions and shape variation vectors. Though the boundary element method(BEM) has been mainly used to obtain the boundary solution, the FEM is used in this paper because this is much more popular, and has greatly improved meshing and computing power recently. The advantage of the boundary DSA is that the shape variation vectors, which are also known as design velocity fields, are needed only on the boundary. Then, the step for determining the design velocity field over the whole domain, which was necessary in the domain-based DSA, is eliminated, making the process easy to implement and efficient. Problem of fillet design is chosen to illustrate the efficiency of the proposed method. Accuracy of the sensitivity is good with this method even by employing the free mesh for the FE analysis.

Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems (열전도 문제에 대한 3 차원 구조물의 위상 최적설계)

  • Moon Se-Joon;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

Topology Design Optimization of Nonlinear Thermoelasticity Problems (비선형 열탄성 연성 구조물에 대한 위상 최적설계)

  • 문세준;하윤도;조선호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.347-354
    • /
    • 2004
  • Using an efficient adjoint variable method, we develop a unified design sensitivity analysis (DSA) method considering both steady state nonlinear heat conduction and geometrical nonlinear elasticity problems. Design sensitivity expressions with respect to thermal conductivity and Young's modulus are derived. Beside the temperature and displacement adjoint equations, another coupled one is defined regarding the obtained adjoint displacement field as the adjoint load in temperature field. The developed DSA method is shown to be very efficient and further extended to a topology design optimization method for the nonlinear weakly coupled thermo-elasticity problems using a density approach.

  • PDF

Topology Design Optimization of Structures using Solid Elements (3 차원 요소를 이용한 구조물의 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper, we develop continuum-based design sensitivity analysis (DSA) methods using both direct differential method (DDM) and adjoint variable method (AVM) for non-shape design problems. The developed DSA method is further utilized for the topology design optimization of 3-dimensional structures. In numerical examples, the analytical DSA results are verified using finite difference ones. The topology optimization method yields very reasonable results in physical point of view.

  • PDF

Sizing Design Sensitivity Analysis and Optimization of Radiated Noise from a Thin-body (박판 구조물의 방사 소음에 대한 크기설계 민감도 해석 및 최적 설계)

  • 이제원;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1038-1043
    • /
    • 2003
  • There are many industrial applications including thin-body structures such as fins. For the numerical modeling of radiation of sound from thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation fails to yield a reliable solution. Therefore, many researchers have tried to solve the thin-body acoustic problems. In the area of the design sensitivity analysis (DSA) and optimization methods, however, there has been just a few study reported. Especially fur the thin-body acoustics, however, no further study in the DSA and optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used for the sizing DSA and optimization. Since the gradient-based method is used for the optimization, it is important to have accurate gradients (design sensitivities) of the objective function and constraints with respect to the design variables. The DSA formulations are derived through chain-ruled derivatives using the finite element method (FEM) and BEM by using the direct differentiation and continuum variation concepts. The proposed approaches are implemented and validated using a numerical example.

  • PDF