• Title/Summary/Keyword: Design Load Cases

Search Result 466, Processing Time 0.03 seconds

A study on case analysis for loading capacity standard establishment of bi-directional pile load test (BD PLT) (양방향말뚝재하시험의 재하용량 기준 설정을 위한 사례분석 연구)

  • Choi, Yong-Kyu;Seo, Jeong-Hae;Kim, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.377-384
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load test of Mega foundation, loading capacity specification were not specified exactly. Therefore there are so many confusions and variations of maximum 2 times in loading capacity are come out. In this study, specifications of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio and sufficiency ratio of design load were analyzed. It can be known that the loading capacity specification of bi-directional pile load test must be defined as 1-directional test load that is established as more than 2 times of design load.

  • PDF

An overview of the structural requirements of passenger carrying rolling stock according to EN12663 and prEN15227 (EN12663과 prEN15227에 따른 객차의 구조적 요구사항 검토)

  • Ainoussa, Amar;Chang, D.S.;Paik, J.S.
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.816-823
    • /
    • 2007
  • As the South Korean rolling stock industry is developing designs for full compliance with the European Standards, it is fitting to take a look at these two core standards. The paper presents an overview of the load cases and structural requirements developed in Europe for the design of safe and compatible rolling stock vehicles. These load cases and structural requirements have been compiled into two standards namely EN12663 and EN15227. Standard EN12663 was developed as a reference design requirements standard. The work was mandated and sponsored by the European Committee for Standardization and Standard issuing National Institutions. EN12663 specifies a series of proof and fatigue load cases for European rolling stock regulations compliant vehicle designs. As EN12663 does not address the crashworthiness issue, a dedicated crashworthiness standard, EN15227, was therefore developed in a similar manner through industry wide consultations managed by a Trans-European working group of experienced engineers and specialists. In both standards, the vehicle and/or trains are grouped into categories reflecting the vehicle types and/or their indented operational function. EN15227, developed to complement EN12663, addresses the "passive" crashworthiness capability of the vehicles and trains. EN15227 specifies reference crash scenarios similar to those found in the Technical Specification for Interoperability (TSI) of high speed trains operating in Europe. The overview also touches on a general comparison with the corresponding British Group Standard (GM/RT2100) and also the UIC leaflet based load cases. The exercise is extended to pertinent design load cases specified by the Federal Railroad Administration (FRA) in the US.

  • PDF

Design of Controllers for Battery Energy Storage System (2차전지 전력저장시스템의 제어기 설계)

  • 한석우;전윤석;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.431-434
    • /
    • 1999
  • This paper presents design of controllers for battery energy storage system. The proposed battery energy storage system can be controlled to operate in the power conditioning mode or the inverter mode. The operation of this mode further divided into three cases: (a) in the peak load period, the load power supplied from the utility is minimized as far as possible; (b) in the off-peak load period, the utility supplies power to the load and charges the battery bank with automatic charging control; (c) in the medium load period, to save battery energy the real power flow out of the battery energy storage system is minimized. Besides, in all cases, the proposed battery energy storage system also automatically compensates the harmonics, subharmonics and reactive power factor in the utility side are much improved. Simulation results are presented by the effectiveness of the proposed controllers for battery energy storge system.

  • PDF

Static analysis of eddy current brake's frame for design evaluation (와전류 제동장치 프레임 설계검토를 위한 강도해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Lee, Byung-Hyun;Mantsch, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.98-103
    • /
    • 2002
  • In this paper, static analysis of eddy current brake's frame, which is one of key structural components of brake system for high speed train, was performed in order to evaluate the design by computer simulation. Calculation was carried out in general for the driving modes 'braking' and 'frame in upper position(Brakes inactive)'. Several yield stress load cases and fatigue load cases were analysed for each of the driving modes. The fatigue load resulting from the Multi Body System simulation was also taken into consideration. The simulation results shows that some of structural part should be improved for more increasing reliability of frame.

  • PDF

A Design Guide of 3-stage CMOS Operational Amplifier with Nested Gm-C Frequency Compensation

  • Lee, Jae-Seung;Bae, Jun-Hyun;Kim, Ho-Young;Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • An analytic design guide was formulated for the design of 3-stage CMOS OP amp with the nested Gm-C(NGCC) frequency compensation. The proposed design guide generates straight-forwardly the design parameters such as the W/L ratio and current of each transistor from the given design specifications, such as, gain-bandwidth, phase margin, the ratio of compensation capacitance to load capacitance. The applications of this design guide to the two cases of 10pF and 100pF load capacitances, shows that the designed OP amp work with a reasonable performance in both cases, for the range of compensation capacitance from 10% to 100% of load capacitance.

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities (플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발)

  • Seung-Hoon Lee;Bo-Young Choi;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.

A Study on the Stratum Thickness Arrangement and Roof Bolt Support Design using Robust Design (강건설계를 이용한 층서두께 배열과 루프볼트 지보설계에 관한 연구)

  • Jang, Myoung Hwan
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.142-155
    • /
    • 2018
  • The ${\bigcirc}{\bigcirc}$ mine has irregularly developed stratum around the ore body. The purpose of this study is to array irregular stratum thickness systematically for effective roof bolting and to implement a supporting system corresponding to it. The number of 81 cases combined with stratum thicknesses was limited to 9 cases by robust design. For each case, the load height which can act as a roof load was determined by the characteristics of stratum and RMR. The load range due to the load height is calculated assuming block shaped and arch shape. The support load of the roof bolt was considered as the average load of the two methods. Numerical analysis results of the support design showed that the cable bolt was more effective for the roof supporting fully grouted than the anchoring type. As a result of the construction, it was possible to control the roof, but all of the roof was gradually sinking downward due to the deformation of the side wall of the mine tunnel.

A Study on the Reinforced Method of Doubler Plate in Ship Hull Structure (선박 이중판의 보강법 연구)

  • HAM JUH-HYEOK
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.39-47
    • /
    • 2003
  • A study of the structural strength evaluation on the doubler plate, considering various load cases that were subjected to in-plane and out of plane combined load, has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate for various load cases, elasto-plastic large deflection analysis is introduced, including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed, based on the results. In order to compare the doubler structure with the original strength of main plate, without doubler, simple formulas for the evaluation of the equivalent flat plate thickness are derived for each load case, respectively, based on the additional series of analysis of flat plate structure. Using these derived equations, the thickness change of an equivalent flat plate is analyzed according to the variation of various design parameters of doubler platesome design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas are discovered, and these relations are formulated for the future development of simple strength evaluation formula of general doubler plate structure.

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method (FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교)

  • Kim, Ki-Ha;Kim, Dong-Hyun;Kwak, Young-Seob;Kim, Su-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.