DOI QR코드

DOI QR Code

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities

플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발

  • Seung-Hoon Lee (Department of Architecture, Konkuk University) ;
  • Bo-Young Choi (Department of Architecture, Konkuk University) ;
  • Han-Soo Kim (Department of Architecture, Konkuk University)
  • Received : 2023.10.04
  • Accepted : 2023.12.08
  • Published : 2024.02.29

Abstract

This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.

본 논문에서는 확률론적 처리기법을 적용하여 플랜트 시설물의 폭발 재현주기에 따른 폭발 위험도를 분석하였다. HSE에서 제공하는 누출 데이터, DNV에서 제시한 플랜트당 연간 누출 빈도, 다양한 연구진이 제시한 점화 확률을 고려하여 누출량에 따른 폭발 재현주기를 산정하였다. 산정된 폭발 재현주기를 통해 폭발 위험도를 증기운의 부피 및 반경, 폭발하중에 대하여 평가하였다. 재현주기에 따른 증기운의 반경과 과거 실제 증기운 폭발 사례, 내폭설계 가이드라인을 비교 분석하여 설계폭발하중 모델을 위한 기준거리를 제시하였다. 멀티에너지법을 통하여 폭발 재현주기에 따른 폭발하중의 범위를 분석하였으며, 설계폭발하중 모델의 기준이 되는 재현주기를 제안하였다. 본 연구의 결과로 플랜트 시설물에 대한 성능기반 내폭설계의 간략한 표준안으로 활용이 가능하다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA163162).

References

  1. AIK & KSSC (2022) Performance-Based Fire Resistance Design Guidelines for Steel Buildings, Architectural Institute of Korea, Seoul, p.117.
  2. ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineer, Virginia, p.300.
  3. ASCE (2019) Prestandard for Performance-Based Wind Design, American Society of Civil Engineers, Reston, VA, p.113.
  4. ASCE (2020) Seismic Evaluation and Design of Petrochemical and Other Industrial Facilities, American Society of Civil Engineer, Virginia, p.346.
  5. Badri, N., Nourai, F., Rashtchian, D. (2011) Improving Accuracy of Frequency Estimation of Major Vapor Cloud Explosions for Evaluating Control Room Location through Quantitative Risk Assessment, Chem. Eng. Trans., 24, pp.1267~1272.
  6. Bai, Y., Xin, B., Yu, J., Dang, W., Yan, X., Yu, A. (2021) Risk-based Quantitative Method for Determining Blast-resistant and Defense Loads of Petrochemical Buildings, J. Loss Prev. Process Industries, 70, p.104407.
  7. CCPS (2012) Guidelines for Evaluating Process Plant Buildings for External Explosions, Fires, and Toxic Releases, Center for Chemical Process Safety, New York, p.219.
  8. Chen, C., Khakzad, N., Reniers, G. (2020) Dynamic Vulnerability Assessment of Process Plants with Respect to Vapor Cloud Explosions, Reliab. Eng. & Syst. Saf., 200, p.106934.
  9. Cho, H.Y., Lee, G.S. (2017) Confidence Interval Estimation of the Earthquake Magnitude for Seismic Design using the KMA Earthquake Data, J. Korean Soc. Coast. & Ocean Eng., 29(1), pp.62~66.
  10. CIA (2010) Guidance for the Location and Design of Occupied Buildings on Chemical Manufacturing Sites, Chemical Industries Association, London.
  11. CPR 14E (2005) Methods for the Calculation of Physical Effects, TNO, Netherlands, p.870.
  12. DNV (2013) Failure Frequency Guidance, Det Norske Veritas, Norway, p.39.
  13. He, Z., Weng, W. (2020) A Dynamic and Simulation-based Method for Quantitative Risk Assessment of the Domino Accident in Chemical Industry, Process Safety & Env. Prot., 144, pp.79~92.
  14. HSE (2015~2022) Quarterly Offshore Hydrocarbon Release Report, HSE, UK.
  15. Jeong, S.Y., Alinejad, H., Ahn, B.W ., Thomas, H.K. (2021). Performance-Based Design and Inelastic Wind Design of Tall Buildings, J. Wind Eng. Inst. Korea, 25(3), pp.119~128.
  16. KDS 17 (2018) Seismic Design General, Ministry of Land, Infrastructure and Transport, Korea.
  17. KFS 701 (2020) Standard on Plant Layout and Spacing for Oil and Petrochemical Plants, KFPA, Korea.
  18. Kline, R.B. (2015) Principles and Practice of Structural Equation Modeling, Guilford Publication, US, p.534.
  19. Lee, S.H., Kim, H.S. (2021) Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases, J. Comput. Struct. Eng. Inst. Korea., 34(1), pp.1~8. https://doi.org/10.7734/COSEIK.2021.34.1.1
  20. Mannan, S. (2005) Lee's Loss Prevention in the Process Industries, Elsevier, p.3708.
  21. MARSH (2020) 100 Largest Losses in the Hydrocarbon Industry 1974-2019, MARSH Ltd., UK, p.76.
  22. Mohamed Ali, R.M., Louca, L.A. (2008) Performance based Design of Blast Resistant Offshore Topsides Part 1: Philosophy, J. Constr. Steel Res., 64, pp.1030~1045.
  23. Oran, E.S., Chamberlain, G., Pekalski, A. (2020) Mechanisms and Occurrence of Detonations in Vapor Cloud Explosion, Prog. Energy & Combust. Sci., 77, p.100804.
  24. PEER (2017) Guidelines for Performance-Based Seismic Design of Tall Buildings, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  25. Read, L.K., Vogel, R.M. (2015) Reliability, Return Periods, and Risk under Nonstationarity, Water Resour. Res., 51(8), pp. 6381~6398. https://doi.org/10.1002/2015WR017089
  26. Ross, S.M. (2017) Introductory Statistics, Academic Press, US, p.63.
  27. RR1034 (2015) Review of the Event Tree Structure and Ignition Probabilities used in HSE's Pipeline Risk Assessment Code MISHAP, HSE, UK, p.63.
  28. RR1113 (2017) Review of Vapour Cloud Explosion Incidents, HSE, UK, p.321.
  29. Sun, X.Q., Luo, M.C. (2014) Fire Risk Assessment for Super High-rise Buildings, Procedia Eng., 71, pp.492~501. https://doi.org/10.1016/j.proeng.2014.04.071
  30. UKOOA (2003) Fire and Explosion Guidance-Part 1: Avoidance and Mitigation of Explosions, UK Offshore Operators Association Limited, London, UK.
  31. van den Berg, A.C. (1985) The Multi-energy Method: A Framework for Vapour Cloud Explosion Blast Prediction, J. Haz. Mater., 12(1), pp.1~10. https://doi.org/10.1016/0304-3894(85)80022-4