• Title/Summary/Keyword: Design Chart

Search Result 557, Processing Time 0.027 seconds

An Effective Design of Process Mean Control Chart in Subgroups Based on Cluster Sampling Type

  • Nam, Ho-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.939-950
    • /
    • 2003
  • Control charts are very useful tool for monitoring of process characteristics. This paper discusses the problem of design of control limits when the subgroups are composed by cluster sampling type. As an alternative method of design of control limits XbBar chart is proposed, which uses the control limits based on the variation between subgroups instead of using classical variation within subgroups. Two examples are presented for reasonable design of control limits and conditions of subgroups based on the cluster sampling. Through examples the guidelines for making proper control limits are proposed.

  • PDF

A Design of Control Chart for Fraction Nonconforming Using Fuzzy Data (퍼지 데이터를 이용한 불량률(p) 관리도의 설계)

  • 김계완;서현수;윤덕균
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.2
    • /
    • pp.191-200
    • /
    • 2004
  • Using the p chart is not adequate in case that there are lots of data and it is difficult to divide into products conforming or nonconforming because of obscurity of binary classification. So we need to design a new control chart which represents obscure situation efficiently. This study deals with the method to performing arithmetic operation representing fuzzy data into fuzzy set by applying fuzzy set theory and designs a new control chart taking account of a concept of classification on the term set and membership function associated with term set.

Efficiency Estimation of Process Plan Using Tolerance Chart

  • Kim I.H.;Dong Zuomin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2006
  • This paper presents a new method for assessing the efficiency of production process plans using tolerance chart to lower production cost. The tolerance chart is used to predict the accuracy of a part that is to be produced following the process plan, and to carry out the quantitative measurement on the efficiency of the process plan. By comparing the values of design tolerances and their corresponding resultant tolerances calculated using the tolerance chart, the process plan that is incapable of satisfying the design requirements and the faulty production operations can be identified. Similarly, the process plan that imposes unnecessarily high accuracy and wasteful production operations can also be identified. For the latter, a quantitative measure on the efficiency of the process plan is introduced. The higher the unnecessary cost of the production, the poor is the efficiency of the process plan. A coefficient is introduced for measuring the process plan efficiency. The coefficient also incorporates two weighting factors to reflect the difficulty of manufacturing operations and number of dimensional tolerances involved. To facilitate the identification of the machining operations and the machined surfaces, which are related to the unnecessarily tight resultant tolerances caused by the process plan, a rooted tree representation of the tolerance chart is introduced, and its use is demonstrated. An example is presented to illustrate the new method. This research introduces a new quantitative process plan evaluation method that may lead to the optimization of process plans.

GLR Charts for Simultaneously Monitoring a Sustained Shift and a Linear Drift in the Process Mean

  • Choi, Mi Lim;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2014
  • This paper considers the problem of monitoring the mean of a normally distributed process variable when the objective is to effectively detect both a sustained shift and a linear drift. The design and application of a generalized likelihood ratio (GLR) chart for simultaneously monitoring a sustained shift and a linear drift are evaluated. The GLR chart has the advantage that when we design this chart, we do not need to specify the size of the parameter change. The performance of the GLR chart is compared with that of other control charts, such as the standard cumulative sum (CUSUM) charts and the cumulative score (CUSCORE) charts. And we compare the proposed GLR chart with the GLR charts designed for monitoring only a sustained shift and for monitoring only a linear drift. Finally, we also compare the proposed GLR chart with the chart combinations. We show that the proposed GLR chart has better overall performance for a wide range of shift sizes and drift rates relative to other control charts, when a special cause produces a sustained shift and/or a linear drift in the process mean.

Consideration of Exergy and Exergy Ratio on T-s Chart of Water (물의 T-s 선도 상에서 엑서지 및 엑서지율의 고찰)

  • Kim, Deok-Jin;Kim, Duck-Bong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.827-832
    • /
    • 2009
  • Exergy is the amount of reversible work obtainable when some matter is brought to a state of thermodynamic equilibrium with ambient. This exergy is availability or useful work induced from carnot cycle, and this can calculate the irreversible loss work which occurs within any thermal or power cycle. The exergy ratio is the value of exergy divided by enthalpy of ambient reference, where the quality of energy or enthalpy in substances is evaluated by exergy ratio. Exergy is very important in optimal design method of thermal system or each component, and the value of exergy at given state is calculated by equation. Here, designer can easily understand and find the value of enthalpy because enthalpy is graphically drawn in chart, however exergy did not. In this paper, exergy and exergy ratio of air were drawn on temperature-entropy chart, and we wish to this chart is a help to design, analysis and education.

  • PDF

Design of Expected Loss Control Chart Considering Economic Loss (경제적 손실을 고려한 기대손실 관리도의 설계)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • Control chart is representative tool of Statistical Process Control (SPC). But, it is not given information about the economic loss that occurs when a product is produced characteristic value does not match the target value of the process. In order to manage the process, we should consider not only stability of the variation also produce products with a high degree of matching the target value that is most ideal quality characteristics. There is a need for process control in consideration of economic loss. In this paper, we design a new control chart using the quadratic loss function of Taguchi. And we demonstrate effectiveness of new control chart by compare its ARL with ${\overline{x}}-R$ control chart.

Design of Median Control Chart for Unsymmetrical Weibull Distribution (비대칭(非對稱)와이블분포공정(分布工程)에서 메디안특수관리도(特殊管理圖)의 설계(設計))

  • Sin, Yong-Baek;Hwang, Ui-Mi
    • Journal of Korean Society for Quality Management
    • /
    • v.14 no.2
    • /
    • pp.2-8
    • /
    • 1986
  • This thesis is concerned with the design of control chart based on the sample median which is easy to use in practical situations and to analyze the properties for non-normally distributed Weibull process. In this cases are use to the quality characteristics of the process are not normally distributed but skewed due to the intermitted production, small lot size and sample size is small one n=3 or n=5, etc. And when it relates unsymmetrically distributed process, model designed median control chart is more effective than Shewhart $\bar{x}$-chart which assumed on normal distribution, when we exactly should be known Weibull distribution or estimated. The median control chart in this thesis is more robustness compared with other conventionally developed control chart.

  • PDF

Economic Design of VSI $\bar X$ Control Chart for Decision to Improve Process (공정개선 의사결정을 위한 VSI $\bar X$ 관리도의 경제적 설계)

  • Song, Suh-Ill;Kim, Jae-Ho;Jung, Hey-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.2
    • /
    • pp.37-44
    • /
    • 2007
  • Today, the statistical process control (SPC) in manufacture environment is an important role at the process by the productivity improvement of the manufacturing systems. The control chart in this statistical method is widely used as an important statistical tool to find the assignable cause that provoke the change of the process parameters such as the mean of interest or standard deviation. But the traditional SPC don't grasp the change of process according to the points fallen the near control limits because of monitoring the variance of process such as the fixed sampling interval and the sample size and handle the cost of the aspect of these sample point. The control chart can be divided into the statistical and economic design. Generally, the economic design considers the cost that maintains the quality level of process. But it is necessary to consider the cost of the process improvement by the learning effects. This study does the economic design in the VSI $\bar X$ control chart and added the concept of loss function of Taguchi in the cost model. Also, we preyed that the VSI $\bar X$ control chart is better than the FSI $\bar X$ in terms of the economic aspects and proposed the standard of the process improvement using the VSI $\bar X$ control chart.

Optimal Design of c Control Chart using Variable Sampling Interval (가변추출간격을 이용한 c 관리도의 최적설계)

  • Park, Joo-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.215-233
    • /
    • 2007
  • Even though the ad hoc Shewhart methods remain controversial due to various mathematical flaws, there is little disagreement among researchers and practitioners when a set of process data has a skewness distribution. In the context and language of process control, the error related to the process data shows that time to signal increases when a control parameter shifts to a skewness direction. In real-world industrial settings, however, quality practitioners often need to consider a skewness distribution. To address this situation, we developed an enhanced design method to utilize advantages of the traditional attribute control chart and to overcome its associated shortcomings. The proposed design method minimizes bias, i.e., an average time to signal for the shift of process from the target value (ATS) curve, as well as it applies a variable sampling interval (VSI) method to an attribute control chart for detecting a process shift efficiently. The results of the factorial experiment obtained by various parameter circumstances show that the VSI c control chart using nearly unbiased ATS design provides the smallest decreasing rate in ATS among other charts for all experimental cases.

An Algorithm for Automatic Generation of Dimension and Tolerance Charts (치수/공차표의 자동생성 알고리듬)

  • Jung, Jong-In;Kim, Kwang-Soo;Choi, Hoo-Gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • Determination of operational dimensions and tolerances is complex if there exist inconsistencies between operational and design specifications. Dimension and tolerance charts (D&T charts) have been used to establish the relationships among operational dimensions in complex machining. This chart proves that individual operations can be harmonized when they are interconnected. However, it is hard to generate the chart manually. Because operational dimensions and tolerances must meet the design specifications, the dimensions and tolerances of interconnected operations have to be verified serially for economical operations. In this paper, the chart is automatically generated from the interconnected operations. More importantly, all operational dimensions and tolerances displayed in the chart have been verified by using LP to meet the design specifications. Finally, the chart is converted to an operational routing sheet that contains a detailed process plan along with cutting speed, feed rate, and operational references based on material hardness, surface finish, and tool nose radius.