• Title/Summary/Keyword: Design Approach

Search Result 10,138, Processing Time 0.033 seconds

Behavior Analysis of Approach Slabs of IPM Bridges according to Unsupported Length and Settlement (토압분리형 교량 접속슬래브의 비지지길이와 지반 침하에 따른 거동 해석)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.650-660
    • /
    • 2018
  • The approach slab plays an important role in the driving comfort of the connection section on a bridge. On the other hand, the approach slab only calculates the section force of a simple beam, and does not analyze the behavior. In this study, the unsupported length and settlement of approach slabs of IPM Bridges were examined using structural analysis. First, the section force was calculated by designing a simple beam, according to the length of the approach slab. The structural analysis was conducted to examine the behavior of the unsupported length and settlement. As the result, the bending moment decreased when the unsupported length was increased, and the bending moment increased when the settlement was increased. In addition, the design section force was estimated to be larger than the force of structural analysis, and the design of the approach slab according to the design guideline showed no problem in stability. Nevertheless, the vertical displacement exceeded the maintenance criterion of a 1/200 curve when the settlement exceeded 10 mm regardless of the unsupported length. Therefore, excessive settlement occurs in the reinforced earth retaining wall supporting the approach slab, and the design bending moment may be exceeded. Therefore, strict management is required.

An approach of seismic design for sheet pile retaining wall based on capacity spectrum method

  • Qu, Honglue;Li, Ruifeng;Hu, Huanguo;Jia, Hongyu;Zhang, Jianjing
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.309-323
    • /
    • 2016
  • As the forefront of structural design method, capacity spectrum method can be applied conveniently, and through this method, deformation demand of structure can be considered. However, there is no research for the seismic application in the structure of sheet pile retaining wall to report. Therefore, focusing on laterally loaded stabilizing sheet pile wall, which belongs to flexible cantilever retaining structure and meets the applying requirement of capacity spectrum method from seismic design of building structure, this paper studied an approach of seismic design of sheet pile wall based on capacity spectrum method. In the procedure, the interaction between soil and structure was simplified, and through Pushover analysis, seismic fortification standard was well associated with performance of retaining structure. In addition, by comparing the result of nonlinear time history analysis, it suggests that this approach is applicable.

A Study on the Derivation of Powder factor for Tunnel Blast Design Based on Blastability Evaluation (현지 암반의 발파특성 평가를 통한 발파 설계인자 도출에 관한 연구)

  • Lim Kyung-Ho;Kim Joon-Youp;Lim Dae-Kyu;Shin Young-Chul
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.75-82
    • /
    • 2005
  • Many blasting engineers develope their own approach to define how to blast different rockmass properties. The problem is that most of these approaches haven't been formalized in any systematic manner and they depend mainly on casual observation of local conditions by an experienced blaster. In this paper blastability index developed by Lilly is adopted to induce powder factor for blast design considering local conditions. With this approach blastability scheme can be considered joint properties as well as rockmass represented local conditions. This approach is also expected to supplement the shortcomings of existing blast design approaches.

A new approach to structuring the process based on design structure matrix (DSM) (DSM 기반의 프로세스 구조화 방법론)

  • Seol, Hyeon-Ju;Kim, Chul-Hyun;Lee, Chang-Yong;Park, Yong-Tae
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.3
    • /
    • pp.39-53
    • /
    • 2009
  • This paper suggests a new process structuring method, which we call process modularization, for decomposing and grouping activities in a process. Above all, we propose the concept of a module that is a group of activities positioned on the same flow before and after control constructs. Since activities in a module are relatively strongly interrelated with one another, it is important to take into consideration of these together. A design structure matrix (DSM) is used to structure the process because it has a lot of advantages in process modeling and analysis. We developed two algorithms: the restricted topological sorting (RTS) algorithm for ordering activities and the module finding (MF) algorithm for detecting modules in a process, which utilize the DSM. The suggested approach enables a firm's manager to design and analyze the process effectively. We also developed a supporting tool to accelerate the progress of process modularization. The supporting tool aids the process manager in finding the module and understanding the process structure easily. An illustrative example is addressed to show operations of the suggested approach.

Direction of approach to web-based edutainment contents for prevention of crime against children (어린이 대상 범죄 예방을 위한 웹 기반 에듀테인먼트 콘텐츠 접근 방향)

  • Kim, Y.K.;Kim, D.H.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.759-768
    • /
    • 2014
  • Recently crime against children is emerged as a serious social problem. Children should be protected in social. However, they have become major targets of the crime, as sexual abuse, abduction, abuse, domestic violence, school violence and so on. To solve these problems, it is important to educate crime prevention for children all above. Entertainment is one of the edutainment's elements. It attracts voluntary participation, immersion, and continuous learning from children. Edutainment contents for prevention of crime against children are far less fully studied than that of school subject as Mathematics, English, and so on. There is no serious study on edutainment contents for prevention of crime against children, as well as base study and approach way. Now more than ever, safety needs are strongly demanded in society. Accordingly, study on edutainment contents for prevention of crime against children have been demanded more than ever. In this paper we shall see basic approach principles and planning process of web-based edutainment contents for prevention of crime against children. This study lays the foundation for future work on edutainment contents for prevention of crime against children.

A simplified approach for fire-resistance design of steel-concrete composite beams

  • Li, Guo-Qiang;Wang, Wei-Yong
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.295-312
    • /
    • 2013
  • In this paper, a simplified approach based on critical temperature for fire resistance design of steel-concrete composite beams is proposed. The method for determining the critical temperature and fire protection of the composite beams is developed on the basis of load-bearing limit state method employed in current Chinese Technical Code for Fire safety of Steel Structure in Buildings. Parameters affecting the critical temperature of the composite beams are analysed. The results show that at a definite load level, section shape of steel beams, material properties, effective width of concrete slab and concrete property model have little influence on the critical temperature of composite beams. However, the fire duration and depth of concrete slab have significant influence on the critical temperature. The critical temperatures for commonly used composite beams, at various depth of concrete and fire duration, are given to provide a reference for engineers. The validity of the practical approach for predicting the critical temperature of the composite beams is conducted by comparing the prediction of a composite beam with the results from some fire design codes and full scale fire resistance tests on the composite beam.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

A Hierarchical Approach for Design Analysis and Optimization of Framed Structures (프레임 구조의 계층적 설계 해석 및 최적화)

  • Hwang, Jin Ha;Lee, Hak Sool
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.93-102
    • /
    • 2000
  • Substructuring-based hierarchical approach for design analysis and optimization of structural frames is presented in this study. The conceptual framework of this method is in the hierarchical modeling for design processes as well as structural systems and the methodology combining substructuring analysis and multilevel optimization. Mathematical models for analysis and synthesis are established on the common basis of substructuring systems. Modularized behavioral analysis, design sensitivity analysis and optimization are linked and integrated on the mathematical and structural basis of substructuring. Substructures are coordinated with the active constraints for system level and the weight ratio criteria. Numerical examples for test frames show the validity and effectiveness of the present approach.

  • PDF

A Development of the Ship Weight Estimating Method by a Statistical Approach (통계적 접근법에 의한 선박 중량추정 방법 개발)

  • Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.426-434
    • /
    • 2011
  • Accurate weight prediction methods are an essential of the ship design in both ship cost managements and performance satisfactions. When no parent or similar ships are available, an adequate method of the ship weight estimating is required. In this study, there was carried out to develop the ship weight estimating method for the preliminary design phase. The weight estimating methods were first surveyed by the references and summarized their characteristics. The weight estimation method by statistical approach was developed for the container ship because the containerized transportation markets is gradually growing and ship's size and loading capacity are rapidly enlarged. The correlation analysis and the multiple regression analysis were used for developing the weight estimating method. As a results of evaluating the developed method, the error ratio of the variation between estimated weight and ship's data was about 5%. And it was only 1% difference with the calculating weight of conceptual design results by shipyard design team that the estimating weight of ultra-large container ship was predicted by the developed method.

Development of a structure analytic hierarchy approach for the evaluation of the physical protection system effectiveness

  • Zou, Bowen;Wang, Wenlin;Liu, Jian;Yan, Zhenyu;Liu, Gaojun;Wang, Jun;Wei, Guanxiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1661-1668
    • /
    • 2020
  • A physical protection system (PPS) is used for the protection of critical facilities. This paper proposes a structure analytic hierarchy approach (SAHA) for the hierarchical evaluation of the PPS effectiveness in critical infrastructure. SAHA is based on the traditional analysis methods "estimate of adversary sequence interruption, EASI". A community algorithm is used in the building of the SAHA model. SAHA is applied to cluster the associated protection elements for the topological design of complicated PPS with graphical vertexes equivalent to protection elements.