X378 3%/39

DSM 7|dto] =2M|A P3| WHHE

A new approach to structuring the process based on
design structure matrix (DSM)

Hyeonju Seol™ - Chulhyun Kim™ - Changyong Lee™" - Yongtae Park”™™

" Department of Industrial Engineering, Korea Air Force Academy
* Department of Techno MBA.Induk Institute of Technology
" Department of Industrial Engineering, Seoul National University

Key Waords ! Process Structuring, Module, Process Modularization, Design Structure Matrix, Algorithm,

Supporting Tool

Abstract

This paper suggests a new process structuring method, which we call process modularization, for decomposing
and grouping activities in a process. Above all, we propose the concept of a module that is a group of activities
positioned on the same flow before and after control constructs. Since activities in a module are relatively
strongly interrelated with one another, it is important to take into consideration of these together. A design
structure matrix (DSM) is used to structure the process because it has a lot of advantages in process modeling
and analysis. We developed two algorithms: the restricted topological sorting (RTS) algorithm for ordering activ—
ities and the module finding (MF) algorithm for detecting modules in a process, which utilize the DSM. The
suggested approach enables a firm's manager to design and analyze the process effectively. We also developed
a supporting tool to accelerate the progress of process modularization. The supporting tool aids the process
manager in finding the module and understanding the process structure easily. An illustrative example is ad-

dressed to show operations of the suggested approach.

1. Introduction

Over the last several decades, firms have con-
fronted with unprecedented changes such as global-
ization, political realignments and the rapid progress
of information and communication technology. To
successfully compete in a changing environment, it
is important that firms have the ability to adapt to

the environment. Business process reengineering

¥ WAIA R} hjseol@afa.ac.kr

(BPR) helps firms to be more responsive to a dynam-
ic environment by implementing process orientated
structures [18]. The BPR is the fundamental re-
thinking and radical redesign of business processes
to achieve dramatic improvements in the measure of
performance such as cost, time, quality, speed, and
services [11]. It means that the BPR focuses on how
work is executed rather than what kind of work is
done. Therefore, a process plays a key role in the
overall competitiveness of modern organizations and
designing and implementing processes effectively is

DSM 7|gte] Z2MA Tx5} gz

a crucial factor.

A process is a set of activities designed to pro-
duce a specified output for a particular customer or
market [7]. In order to design or redesign a process,
it is necessary to capture description of the relation-
ships between the activities first. This is because
the process must be fully evaluated and analyzed for
the desired outcome before actually implementing
the process. There are various process modeling
methods such as flow charts and data-flow diagrams
[26], Petri nets [22], IDEF techniques (IDEF 0,
IDEF3) 19, 20], UML [2] and so on. These models
allow organizations to be able to reinforce process
understandability, increase communication capa-
bility, assess process feasibility, compare alter-
natives, and evaluate changes in the process, etc.

Once process modeling is done, it is required to
structure the process, since it is very difficult to an-
alyze all activities and their relationships simulta-
neously in one-dimension. The most general method
for process structuring is decomposing the process
into several sub-processes at a lower-level.
Decomposition, which means dividing the problems
into sub-problems, has long been recognized as a
useful approach for simplifying large and complex
systems [7]. There have been some studies related
to the organization of the process by using decom-
position approach. Johnson and Benson [16] as-
sumed that all of sub-processes are separable.
Kusiak et al [20-22], Steward [29], Rogers and
Bloebaum [28], and Eppinger et al. [10-12] applied
the decomposition to group activities that have a
high degree of cohesion within groups and low cou-
pling among groups. Chen and Lin [5] used the de-
composition concept to divide large interdependent
task groups into smaller and manageable task
groups. Yassine and Braha [31] proposed a unified
solution approach to solve four critical problems in-
volving decomposition problem.

This paper presents a new approach to structuring
the process on the basis of modular synthesis. Chen
and Lin [5] developed three types of modular syn-
thesis of mechanisms: structural fractionation based

on product structure, functional fractionation based
on same function, and kinematic fractionation based
on kinematic influence. Contrary to Chen and Lin
[5], the approach in this paper focuses on process
flows. To do this, the concept of a module in a proc~
ess is newly suggested. A module is defined as a
group of activities which are divided by split or
merge points in a process flow. In addition, to struc-
ture the process in a hierarchical architecture, the
concept of a nested process suggested by Kim et
al. [18] is employed. In a nested process, a complex
process is broken into several sub-processes and
structured in a hierarchical form. A nested process
contains two types of activities: primitive and
nesting. Primitive activities cannot be broken into
smaller elements while nesting activities are all de—
ployed into sub-processes. Furthermore, algorithms
structuring the process in terms of a module are
developed.

We propose a method using a design structure
matrix (DSM) in structuring business processes. The
DSM is a useful method for representing complex
systems and their relationships in a simple and visual
manner. And it gives helpful ideas for process im-
provement by operating rows and columns. Its ef-
fectiveness has been demonstrated in the analysis
and management of the process [3, 4, 21, 23]. Along
this line, the previous mentioned studies [5, 10-12,
16, 20-22, 28, 29] utilized the DSM to decomposing
the process.

The remainder of this paper is organized as
follows. Section 2 gives an overview of the DSM.
Section 3 explains and illustrates the concept of a
module suggested in this study. Section 4 addresses
each steps of process modularization and explains
algorithms related with modularizing process.
Section 5 gives an illustrative example to demon-
strate the operation involved in process modulariza—
tion. Section 6 presents the supporting tool for
structuring the process automatically. Finally, in
section 7, some conclusions are drawn and the vari-
ous Implications and future research initiatives are

discussed.

373 /41

2. Design Structure Matrix

The DSM was originally developed by Steward
[29] for information flow analysis and has been
widely used to manage and analyze projects in the
1990s. The DSM have been applied to various areas
such as building construction, semiconductor, auto-
motive, photographic, aerospace, telecom, small~
scale manufacturing, factory equipment and elec—
tronics industries [3). Similarly to the incidence ma-
trix in graph theory [9], a DSM is a square matrix
with identical rows and columns. In the DSM, like
a project task or system component, an activity in
a given business process is positioned in a row and
a corresponding column. The relationships between
activities are represented by marking the cell that
is formed by rows and columns related with the
rows. <Figure 1 and 2> give illustrations of DSMs,
each of which showing the nested process and the
activity block. Further details are below.

Main process
1l2]3{s]s
e
2|+
P1
3 IS
4 e
5 +
x““ﬁv ,’ - -
- 4
11224 1f2]af4]s
N 1] [poimitive astivity
Pz e PR e [Mesting activiey
N 3 bl I * Activity itself
N)
bl * + Link
b l+ + 5 B
S e
- --Nested process

Nested process ..

11213
1|

P
2+

3 + 1

Nested process

<Figure 1> DSM representing nested process

In the DSM, an off-diagonal mark represents the
dependency among activities and a diagonal cell in-
dicates the activity itself. Here, an activity in a col-
umn is the preceding activity. For example, in the
main process in <Figure 1>, activity 1 has some re-
lationship with activity 2. This means that activity
1 is processed prior to activity 2 or that the output
of activity 1 is used by activity 2. By structuring a

large DSM into a hierarchy of smaller DSMs, the
DSM can express the nested process. As shown in
<Figure 1>, the main process is composed of five
activities and has two nesting activities. These nest~
ing activities are further deployed into processes P2
and P3. P4 is another nested process which is posi—
tioned at a lower level and shows how a nested proc~
ess can be shared or can be used several times.

<Figure 2> Three types of an activity block

<Figure 2> shows how the DSM can represent ac—
tivity blocks. In a process, there are three types of
behavioral patterns, namely serial, parallel and iter-
ative ones 11]. Since activities 1, 2 and 3 are con—
nected consecutively, called a serial block, these
activities can he executed sequentially. In a serial
block, each of activities has only one activity before
and after the activity. Activities 4, 5 and 6 can pro-~
ceed in parallel, called a parallel block, and thus they
do not depend on one another. A parallel block can
be classified further according to the split and merge
form: AND, OR, XOR-parallel block and so on.
Activities 7, 8 and 9 form a cycle. This is called an
iterative block and it 1s appears when some activities
are carried out repeatedly.

As well as supporting the representation of a
process, the DSM is useful for analyzing a process.
First, it overcomes the size limitation of other
graph—based process representation methods and
offers a much more compact representation [5].
Second, important information about a process can
be obtained through the DSM operations such as
finding a mutually-separable process, discovering
the order relationship among activities, and detect~
ing cycles in a given process. They can be conducted

42/4HT YU 0| HS - g

a

DSM Z(gte] T 2MA x5} diHZ

with cluster identification algorithm {21, 22], topo-
logical sorting algorithm [15, 18], and Power of
Adjacency matrix method [13] or triangularization
algorithm [22], respectively. Third, the form of a
matrix is amenable to program and calculate using
computers [6, 30, 311.

3. Concept of a module

The concept of a module is the underlying basis
of our approach. A module, like an activity block, is
a group of activities which are positioned between
control constructs. However, they are different in
that a module focuses not behavioral patterns but
process flows. A module is the further segmented
than an activity block, according to the flow existing
between activities. Also, a module can be comprised
of several activity blocks.

At Request Matarial
[T/ 0 Order Matersal
i TN
H i H . Order
o st | X o eqwsee
o | S| S e/ e)
~_ | it
Carvet ;
\ swier |/
e

: kentify Supplier

<Figure 3> An example of modules in a process

In <Figure 3>, a process with IDEF3 [25]. the
process is partitioned into four modules: A, B, C, and
D. Modules A and B are composed of several activ-
ities but modules C and D are composed of only one
activity. The first module in a process is a group A
which is on the far left among the modules. The
module is a starting point of a whole business proc-
ess and is made of four activities: prepare purchase
request, obtain account manager's approval, obtain
authorization signature and submit signed purchase
request. Since these activities are interrelated with
one another for requesting material, it is necessary
to consider together for progressing or improving a
process. After activities in a module A are processed
. consecutively, the process meets new modules: B
and C. Although these two modules constitute a par-

allel block together in a view point of an activity
block, they have different flows: one is for selecting
a new supplier and the other is for identifying a cur-
rent supplier. Therefore, we differentiate these ac-
tivity groups definitely and handle each of them as
an independent logical unit, which is referred to as
a module. As such, a module is defined as a group
of activities divided by split or merge points in a
process flow. Also, it is a set of activities which
share a common objective. D is the last module for
ordering material. <Figure 4> shows the DSM pre-
senting the modules in <Figure 3>.

Activities

1: Prepare purchase request {

2; Obtain accatmt muznager's approval she i s

3: Obtamn suthonzation signature

4: Submit signed purchase request
5: Tdentify potential suppliers

6: Request bids »

7: Evaluate bids -

$; kdeniafy current supplice g X »

9: Order requested matenial 3 X X}

<Figure 4> DSM representing modules in <Figure 3>

Like a nested process, a module can be further
broken into sub—modules. To do this, we defined two
types of modules: a primitive module and a nesting
module. As shown in <Figure 5(2)>, a whole process
is partitioned into four main modules: A, B, C, and
D at the 1¥ level. These modules are at the highest
level. An investigation of these modules reveals that
not modules A and D but modules B and C can be
further decomposed into sub-modules. Modules A
and D are primitive modules while modules B and
C are nesting modules. Nesting modules B and C are
further decomposed into sub-modules bl, b2, b3,
and b4, and cl, ¢2, ¢3, and c4 at the 2" level
respectively. These sub—modules are modules at
relatively lower level and can also have sub—-mod-
ules at further lower levels. That is, sub—modules
comprise the module at a higher level, but at the
same time, each sub—module can possess sub—-mod—
ules at a lower level. <Figure 5(b)> shows the DSM
representing the modules in (a) with IDEF3.

Structuring the process based on the module gives

H37HM3E/43

e Modules 3¢ the 1% level
Madules ot the 2 svel

@

tlzlajei{siglatziatmlu
.

2+

3 &k

8 [V

[] B

9 ClObs

4 & .

B Xi-

g e »

i P A
i & &

Bl B2 b3 B3 el €2 3 w4
St] st s e e

A B Log n

L]

<Figure 5> An example of modules for both 1st and 2nd level

several advantages in modeling and analyzing the
process.

+ It is conducive to the management and analysis
of a complex process in that it reveals the proc-
ess structure according to the logical unit.

It allows a process manager to organize the
cross—functional team in an appropriate manner
because a cross—functional team may be con-
structed by the unit of a module instead of the
whole process.

It enables a process manager to think about
process improvement with a broader perspec-
tive by offering both interrelated activities and
a problematic activity.

It increases the reusability of a process because
a module can be regarded as a manufacturing
part or a software component, and hence re-
duces unnecessary efforts for process design.

4. Process modularization

In order to modularize the process, it is necessary
to represent the activities in the process and their
relationships with the DSM. An activity is placed in
a row and a corresponding column on the DSM. The
relationships among activities are expressed by
links and junction marks used in IDEF3. There are
various approaches to represent the relationships

between activities in the process. The DSM notation
can be expressed with numerical values to describe
the degree of relationships. On the other hand, the
relationship is described with Boolean operators to
only show the existence or nonexistence of the
relationships. In this study, we augment DSM nota-
tion by links and junction marks used in IDEF3 since
these well show the relationships between activities
in the process. In representing a process with the
DSM, we assume that there are no successive junc~
tion marks between activities. This is because the
DSM cannot indicate successive junction marks in
one cell formed by a row and a colurm. We can solve
this problem by introducing ‘dummy’ activities.

<Figure 6> shows the overall flow of process
modularization including major procedures repre-
sented in rounded rectangles colored gray. Before
modularizing the process, a preliminary step is
performed. This step, expressed in a rounded rec—
tangle, is necessary to detect iterations in the
process. When an activity needs to go back to a cer-
tain previous activity, cycles are formed in the
process.

With the preliminary step, the information is reg-
istered and then, removed from the process. This
procedure is repeated until there are no more cycles.
A cycle is not a basic element of the process in a
view point of process modularization since it appears
when some activities are performed repeatedly.

DSM Zjute| Z2MA Fxal WHE

Therefore, cycles are regarded as additional in-
formation and this step is used only to find and keep
the information. This step does not need to go into
more detail since there are several algorithms for
finding cycles on the DSM such as path searching
and power of adjacency matrix methods [13].

-~ RTS algorithm

3

>~ MF algorithm

Bewecting 1&33*&2@?&‘:1:&
Colitergence points

Representing cycle relationships

<Figure 6> Overall flow of process modularization

After the preliminary step is performed, main
steps for modularizing the process proceed. The
first major step is to order activities in the process.
In general, the ordering in the DSM is a temporal
sequence. That is, the DSM focuses on only two ac—
tivities and their relationship in representing
activities. So, it is required to induce activity order
from a process view point. This is because a module
is a group of activities divided by split or merge
points in a process flow and process modularization
is a process structuring method based on a module.
To do this, we developed the restricted topological
sorting (RTS) algorithm, which is further described
later in this section. Then, three consecutive proce-
dures, which are detecting all divergence and con-
vergence activities, identifying candidate modules,
and finding modules, play a crucial role in process

modularization. These procedures are performed by
the module finding (MF) algorithm that we developed
to identify modules in a process. Each of them is
corresponding to the phase I II and I in the MF
algorithm, respectively. More details on these pro-
cedures will be given in this section. Finally, two
checking steps are undertaken. One is examining
whether or not sub-modules exist at a lower level.
If they do exist in detected modules, the module
finding process, from detecting all divergence and
convergence activities to finding modules, is reap-
plied to these modules to find modules at a lower
level. The other is representing a cycle relationship
to the DSM when the original process has a cycle
relationship between activities.

4.1 Ordering activities

One of major procedures for process modulariza-
tion is ordering the activities according to the proc-
ess flows. Since the ordering in a DSM is temporal,
the activities need to be reordered appropriately to
precede the module finding process. For this pur—
pose, we developed the RTS algorithm. The RTS al-
gorithm originates in the topological sorting (TS) al-
gorithm [15, 19] used to induce the order relations
among activities. Two algorithms are different in se—
lecting which activity is arranged first among the ac—
tivities having no predecessor. The TS algorithm
gives a priority to any activity without preceding ac-
tivity in ordering while the RTS algorithm orders the
immediate successor of the preceding activity which
is already ordered in the previous stage first.
Therefore, we give the name RTS due to its charac-
teristics that a choice of an activity is restricted. The
procedure of the RTS algorithm is as follows;

Step 1: Set 1 = 1 and make a search list having no
elements.

Step 2: Find the every row {K} of the matrix with
only one non-empty element and go to Step 9.

Step 3: If the number of {K} is 1, go to Step 6.
But, if the number of {K} is 0, go to Step 5.

H37AM35/45

Step 4: Select one element k from {K} randomly, add
the other elements of {K} to the search list
and go to Step 6.

Step 5: If there is no element in search list, stop;
Otherwise select the last element k of search
list and delete that from the search list.

Step 6: Draw horizontal line through column k.

Step 7: Draw vertical line through row k.

Step 8: Label i the cross—out row k and column k of

the matrix, set I=1+1 and go to Step 2.

Step 9: Find every element {K'} in {K}which are not
in a search list.

Step 10: Set {K}={K"} and go to Step 3.

The algorithm first finds an arbitrary activity
without a preceding activity and puts this activity to
the first column and row of the DSM. Among the re-
maining activities, an activity having no preceding
activity is found and placed in the next position of
the DSM again. In this time, if there are activities
that are immediate successors of the preceding ac-
tivity positioned on the DSM already, these activities
should have priority over all other activities. This
process continues repeatedly until there is no re-
maining activity left. The computational complexity
of the algorithm is O (n2), where n is the number of
activities in the DSM. The performance of the algo-
rithm will be given in detail later with the numerical
examples.

4,2 Module finding

The module finding process is composed of three
procedures: detecting all divergence and convert-
gence activities, identifying candidate modules, and
finding modules. These procedures all utilize the
DSM which is reordered by the RTS algorithm. To
perform these procedures, we developed the MF al-
gorithm comprising three phases, each of which
supports these three procedures individually. To en—
hance comprehension, we described the algorithm
by the phase. Listed below is the notation used in
the algorithm.

» s the number of activities in DSM
+ p: the level of modules
« {M}, 1+ a set of modules of level p with the size
of T
» {L},w a set of modules of level p with the size
of W which may have lower level mod-
ules
» {Chy,: a set of activities having three elements
in a column with the size of N
+ {R}n a set of activities having three elements
in a row with the size of N
« {Gla a set of activity groups with the size of
2N
» ¢; the iy element of {Chy
» 1y the iy element of {Rhy
+ g the iy element of {Glan
« Uil the number of elements in g
*+ Y, the number of unmarked modules in level p

In phase I, the algorithm finds all divergence and
convergence points in the design process, ie. the
activities from which following activities split or on
which preceding activities merge are found. This is
performed by finding all activities having three ele—
ments in a row or a column respectively. The step
0 in phase Iis used for initialization of the whole
MF algorithm. The phase [of the MF algorithm as
follows;

~ Phase 1/ Detecting divergence and convergence
activities.
Step O0: Set p = 1 and
DSM=the target matrix for module find~ ing.
Step 1. Set loop = 1.
Step 2: Set 1 = 1.
Step 3 If iy column of the DSM has three elements,
add 1w activity to {Ch.
If i row of the DSM has three elements,
add iy activity to {Rhw
Step 4: f1<s,seti=1+ 1and go to Step 3.
Step 5: If p = 1 and N = O, stop.
Step 6: fp> 1and N =0, goto Step 14 of Phase T
otherwise go to Step 1 of Phase II

A6/ A -

DSM 7|gte] Z2MA Fx3} HE

In phasell the MF algorithm finds all activities ex-
isting between divergence activities and con-
vergence activities by tracing activities that follow
the divergence activity and that precede the con-
vergence activity. More details about this process
are appeared in step 3 and step 8 shown below.
Through these procedures, the algorithm finds can—
didate modules based on divergence and con-
vergence activities.

— Phasell/ Identifying candidate modules.

Step 1: Seti = 1.

Step 2: Select iy activity ¢ in {Chy.

Step 3: Among the activities following the selected
activity in a row, find all activities from the
activity which has the first junction mark to
the activity immediately prior to the next
junction mark

Step 4: Make these activities a set g; and add g; to
{Glan.

Step 5: If i < N, 'seti =1+ 1 and go to Step 2.

Step 6: Set i = 1.

Step 7: Select iy activity ri in {R}n.

Step 8: Among the activities preceding the selected
activity in a column, find all activities from
the activity immediately after the activity
having the first junction mark to the activity
which has the other junction mark immedi-
ately prior to the selected activity.

Step 9: Make the these activities found in Step 8 a
set gy and add girn to {Glon.

Step 10: If i < N, seti =1+ 1 and go to Step 7

otherwise, go to Step 1 of Phase I

In phaselll the algorithm begins by identifying the
modules among the candidate modules resulted from
phase I These modules are discovered by eliminat-
ing the candidate modules generated from di-
vergence or convergence activities which are also
member of the activities in other candidate modules.
Next, modules which are not based on the di-
vergence or convergence activity are obtained. This
process is executed by drawing vertical lines and

horizontal lines on the DSM across all activities that
exist in the modules created from divergence and
convergence activities. When vertical and horizontal
lines are drawn, activities in the DSM that are sepa-
rated by these vertical and horizontal lines form
groups. These groups and modules produced from
divergence and convergence activities become
modules that exist in the DSM, the target matrix for
module finding.

— Phaselll// Finding modules.

Step 1: Seti=1,j=1k=1.

Step 2: If 1 > N, go to Step 4 otherwise go to Step 3.

Step 3: If kg, element of g is ¢;, mark g; and go to

Step 5 otherwise go to Step 5 directly.

Step 4: If ke element of gj is ri-n, mark g and go

to Step 5 otherwise go to Step 5 directly.
Step 5: If Kk < U;, set k =k + 1 and go to Step 2
otherwise set k = 1.

Step 6: If] < 2N, set j =j + 1 and go to Step 2
otherwise set j = 1.

Step 7: If i < 2N, seti =i+ 1 and go to Step 2.

Step 8: If the number of unmarked g; is 0, go to Step
11; otherwise draw vertical lines and hori-
zontal lines in DSM across all activities in all
unmarked g;. Find all activity groups sepa-
rated by a border that is formed by crossing
out the rows and columns in DSM.

Step 9: Add all unmarked activity groups and activity

groups found in Step 8 to {M},r.

Step 10: Among the activity groups in {M},1, add
activity groups generated from divergence
and convergence activities and having ac-
tivities that generate marked g; to {L},w.

Step 11: If p = 1 and Y; = 0, stop.

Step 12: If p =1 and Y; is not O, set DSM = 1; of
{Lhw, p=p+1 and go to Step 1 of Phase L

Step 13: If loop < W of {L},-1w, set loop=loop +1,
DSM = ligop 0f {L}p-1,w and go to Step 2 of
Phase L.

Step 14: If Y, = O stop otherwise, set p =p + 1 and

go to Step 1 of Phase L

ERY el

H37HH35/47

The steps from 11 to 14 in phase Il are used for
checking whether or not sub-modules exist. If
sub-modules do not exist, all the procedures for
finding the module suspended otherwise, the MF al~
gorithm defines the new DSMs and repeats to all the
new DSM. Among the modules identified from di-
vergence or convergence, modules having diver-
gence or convergence activities of the eliminated
candidate modules are new DSM for finding modules
at a lower level. Then, the module finding process
is reapplied to each of the new DSM to look for mod-
ules at the next lower level. This process ends when
there are no more sub-modules in the DSM. The
time complexity of the algorithm is Om®), where n
is the number of activities in the DSM. Table 1 shows
the computation times on a PC with a Pentium 4 pro-
cessor (2.53GH) and 1 GB RAM when both the RTS

<Table 1> Performance results of algorithms

Number of Maxixtr)n‘\m Maxix;;pm Computation time(msec)*
activities | (U | o o RTS MF
rancnes | ol levels algorithm | algorithm
) 2 1187 610
- 4 1203 391
25 M 139
A 2 1203 797
4 1235 1432
5 2 7265 2110
‘0 - 4 7331 4486
N
1 2 7398 2311
4 7604 4969

* Computation time is the sum of 1000 iteration times

and the MF algorithms were applied to the numerical
examples. It appears from the results that the com-
putation time is affected by not the number of
branches but both the number of activities and the
number of levels in a process. Increasing the number
of activities and levels caused an increase of compu-
tation time not only in the RTS algorithm but also
in the MF algorithm.

5. An illustrative example

To explain the newly suggested approach in this
study, a hypothetical process composed of 14 activ—
ities has been made. The activities and their rela-
tionships are described through the DSM repre-
sentation, which is appeared in <Figure 7(a)>.

5.1 Ordering activities

The first major step of process modularization is
inducing the ordering of activities grounded on the
flow among activities by use of the RTS algorithm.
<Table 2> shows the procedures of the RTS algo-
rithm applied to the hypothetical process and
<Figure 7(b)> presents the final result. In <Table 2>,
k is the selected activity for inducing order and the
number of label indicates the sequence. The order of
activities is 1-13~14-7~-8-5-3-6~11-2~9-10~4-b.

The DSM in <Figure 7(a)> is the otiginal DSM and
the DSM in (b) is the outcome of the rearrangement

1l ials el wivieinninin tiiMirig s sl einizis wa 2
' 1.
2 - vigl-
M X X “ +
+ o Q0 0 IO *
£ X 8 X
10 - H X *
Tio - 3 X x;
3 X i D »
4 & i &
1 & & 2 Wi
113 & » &
-4 + » & &
B0 * 4 o 44 0
M * © i

®

&y

<Figure 7> Result of the RTS algorithm applied to the virtual process

HEF - U™ - 0|HS U DSM 7Iite| T2AlA Tx5} w2
<Table 2> Procedures of the RTS algorithm of activities with the RTS algorithm. The DSM (a)
Initial Initial New New i : -
qoapial, | o B K| oW | Label ha§ a cycle relat%onshlp (coloreq gray) b‘etween ac
1)) D I 0 1 tivity 6 and activity 10, but this information does not
2 (} (6,7.3) | 6,713 13 8.7} 2 appear in the DSM (b). This is because cycle rela-
3 67 16711] a4 14 6.7} 3 tionship is registered and removed from the DSM
4 {6,7} 6,7) 0 7 {6} 4 . . .
5 1 G668 | 68 | 8 651 5 before the RTS algorithm is applied. The order of
6 (6,5} (5.6) 0 5 {6) 6 activities in the DSM of <Figure 7(b)> is not a unique
Z 56; (?'?) ((3;) 3 {(6}} 7 result of the RTS algorithm but merely one of the
6 6 6 8 } .
9 0 s Tem T o) 5 possible orders. The ordering results are dependent
10 {9} (2.9 2 2 {9) 10 on which activity is chosen among the activities (K
i1 {9}) 0 9 4 11 in <Table 2>) having the same priority in:ordering.
12 { (10) 10 10 {} 12 How bit lection f th tiviti
5 5 D o 7 m 3 owever, an arbitrary selec 1'or1 rom these aF ivities
14 ¢ (5) 5) 5 0 14 does not become problematic because the induced
15 0 0 0 Stopped modules are the same irrespective of whichever or-

% 3 § l n|z 9 || s |12
Phase Divergs & points
nigi»
" 41 £ C= {176}
. " R={3,10.4}
8 xi*
E 3 -
X Divergenve &
XX/ Phase Candid
T artivitias
n & |+ =1 g = {13, 14}
- g =1{%553
- ! €= =18
& . - =6 2 ~{11, 2
&l &~ n=3 8 = {5}
;=10 %= %
0 T
o 0 =4 & ={18. 53
T g~ (6,13, 2,9, 183
(a)
|7 E + 3 & i ¢ B3 12
H Phase [y! R
EI A I : i g = (13,14} Module
14 EA B T - &= {1.%.53) Module
2ob 3 I g~ 18) Eliminated
> = + F A €
> o d:;””":& 2 =012 Eliminated
; e : L raene g = 15} Eliminated
A . : - convergence .
bl B b activitias) 2 ={9 Fhminated
2 X% & ={1.8.53 Eliminated
P P : P g =16,11,2,9,10} Module
" PR
3 AU R
- - Phase Activity group Remarks
B : ¥,
1 & &t 3
4 § [H S e thased on the {13 Moduni
S IR o N I 0 r border by {4, Modsle
12 I ERE e vl Modules)
(b)

<Figure 8> Module finding process applied to the DSM (b) in <Figure 7>

EEYssix|

H37AMIE/49

dering outcome is used to find modules in a process.
In the DSM of <Figure 7(a)>, there are 20 possible
activity orderings. Among them one is produced in
this case which is represented in the DSM of <Figure
7(b)>.

5.2 Module finding

Based on the ordered result of activities with the
RTS algorithm, the module finding process is
executed. <Figure 8> shows this process according
to the phases when the MF algorithm is applied once
to the DSM in <Figure 7(b)>. <Figure 8(a)> presents
the process for detecting the divergence and con-
vergence activities and candidate modules. Since
activity 1 in the 1% column has four elements (more
than two) corresponding to the rows of activities 1,
13, 7 and 6 in the DSM, activity 1 becomes one of
the divergence activities (c;=1). Activities 7 and 6
in columns are also divergence activities because
each of them has three elements in the correspond-
ing row. Unlike the divergence activities, activities
in rows having more than two elements in the corre—
sponding columns are the convergence activities
(ri=3, r2=10, rs=4).

In phase I the algorithm finds all candidate mod-—
ules composed of activities that follow the di~
vergence activities and that precede the con-
vergence activities. By tracing from activity 13

which has the first junction mark (O) to activity 14
immediately prior to the next junction mark (O}, one
of candidate modules (g1={13, 14}) is elicited. This
is a candidate module produced from a divergence
activity ¢1=1. The other candidate module from a di-
vergence activity c1=1 is go={7, 8, 5, 3} which is
composed of activities positioned between activity
7 and activity 3. In this case, activity 7 is the activity
having the second junction mark whereas activity 3
is the activity just before the next junction mark. As
such candidate modules based on divergence activ-
ities are obtained by tracking from an activity having
a junction mark to an activity just prior to an activity
having the next junction mark. There are four candi-
date modules in a given process which are based on
the divergence activities: g1={13, 14}, g={7, 8, 5,
3}, g={8} and g,={11, 2}. In case of a convergence
activity, among all preceding activities of the con-
vergence activity, from activities positioned imme-
diately after junction mark to the activities having
the next junction mark become the components of
the candidate module. Candidate module gs={5},
g6={9}, g7={7, 8, 5, 3} and gs=16, 11, 2, 9, 10} are
generated from the convergence activities Rs={3,
10, 4}

After finding all candidate modules based on the
divergence and convergence activities, the algo—
rithm looks for modules. <Figure 8(b)> shows the
results of this process. Phase I begins by identify-

ORI IR T A A] £ 3 3 2 2 10 4 |12
RSS!
Blol-+ K}
" N Results ~ Modules New DSMs
Tlp B E/E‘ A}

: 113, 14)
s Xl At e 1 ?%’;{3} 18,53
M HELS - - 16,11,2,9,10
X\ 1 el g z,0, 1 O ILROM

} 1% £ 1432
s |0 .)
£
b {7y~ Medules atthe 15 level
9 & | e
1 Ak 3 ~ Deleted candidate modles at the 15 level
4 o o NE
1 L.

<Figure 9> Results of the modularized at the 1st level

50 g\é_{%‘_ 1K 3. 0|XIZ . SR E]
[(=h=a=1

DSM 7gtel Z2AjA T35} HHHE

ing modules among the candidate modules dis-
covered in phasell These modules are found by re-
moving the candidate modules. There are two cases
when candidate modules are eliminated: one is when
candidate modules are also members of other candi-
date modules and the other is when there are several
candidate modules comprised of identical activities.
For example, in (b), candidate module g3={8},
gs={11, 2}, gs=1{5}, and g={9} are eliminated, since
these are also subsets of candidate module g»=1{7,
8, 5, 3}, g={7, 8 5, 3}, and ge={6, 11, 2, 9, 10}.
A candidate module {7, 8, 5, 3} is also deleted be-
cause of being duplicated. The candidate module {7,
8, 5, 3} is duplicated because it is generated from
both a divergence activity (c1=1) and a convergence
activity (rs=4). In this study, we removed the candi-
date module g;=17, 8, 5, 3} produced from a con-
vergence activity (rs=4). As a result, the remaining
candidate modules g1={13, 14}, g:={7, 8, 5, 3}, and
gs=16, 11, 2, 9, 10} became modules based on the
divergence and convergence activities of a virtual
process in <Figure 6>. Next, the horizontal and ver-
tical lines are drawn on the DSM through activities
(13, 14,7, 8,5, 3, 6, 11, 2, 9, 10} that are members
of module g, gs, and gs. These lines separate and
group the remained activities in the DSM and each
group formed by these lines is also a module in a
given process. In this case, activity group {1} and

{4, 12} are the modules that are generated from the
horizontal and vertical lines. This procedure is rep-
resented in the DSM in (b).

As far, the algorithm found all modules existing
in the 1* level of a given process and the DSM as
shown in <Figure 9>. This Figure shows modules
A={1}, B={13, 14}, C={7, 8, 5, 3}, D={6, 11, 2, 9,
10}, and E={4, 12}. Among the modules generated
by the divergence and convergence activities in the
1 level, modules involving the deleted candidate
modules (C and D) are defined as the new DSMs.
Then, the whole module finding process is reapplied
to each new DSM to find modules at the 2" level.
<Figure 10> shows the final results after the MF al-
gorithm was applied to a hypothetical process. In this
<Figure 10>, the bold lines represent the modules
at the 1% level and the dotted lines represent the
modules at the 2™level. Consequently, a hypothetical
process is composed of five modules at the 1% level
and two modules (C and D) have sub-modules at the
2" Jevel, each of which has four modules. They are
c1={7}, c2={8}, c3={5}, and c4={3} in a module C,
and d1={6}, d2={11, 2}, d3={9}, and d4={10}in a
module D. The gray colored cell indicates the cycle
relationship which was in the original process. The
DSM in <Figure 10(a)> represents the modules
one—dimensionally while the DSMs in (b) show. the
modules in a hierarchical form.

A
B (B) 8
5
Y + cl1o 2
TS T a ©) (e}
' Xy vge 13
$ X ‘e "
* XX ot ",
6 | o “ha o
1 & a et el @3 e 8w
2 * ol § ar
] & i
et i X 28
ht} & &y~ Jau ilE}
= 3! X #8108
3 O Q [B
" - o5 XX L] & &
i

(a)

(b}

<Figure 10> Final results of the modularized process

H37AHHM3E/51

6. Supporting tool

In order to support the modularization process, we
developed a web-based system with JSP, J2SDK1.4.2,
and Tomcat 4.1. The system can create DSM com-
prising any number of activities a user wants. The
relationships between activities are expressed by
selecting links and junction marks provided by a se-
lection button, <Figure 11 and 12>, a process with
27 activities, display the final results in a different
point of view when the whole modularization process
is performed. The left sides of these figures show
a detailed description of the activities and the right
sides show the DSMs. The DSM in <Figure 11> ex~
hibits modules in a one-dimensional way while the
DSM in <Figure 12> exhibits modules in a hier-
archical structure. These two interfaces are supple-
mentary 1o each other. The interface in <Figure 11>
provides detailed information about modularized
process with activities involved in modules, whereas
the interface in <Figure 12> gives more abstracted
information about the modularized process. In
<Figure 11>, the level of modules is differentiated
according to the brightness of gray color. The mod-
ules at the same level are represented by the same
brightness. And the lower the level of a module is,
the darker the color representing the module is. For
example, modules {16}, {22, 11, 23}, {17}, and {24}
are modules at the same level and at the most lower

<Figure 11> Modules expressed one-dimensional way

level. The cell which is drawn bold line indicates the
cycle relationship between activity 6 and activity 4.

In <Figure 12>, we can see that the entire process
is composed of four modules at the 1™ level and two
modules (B and C) have sub-modules at the 2™ level
respectively. In addition, sub-modules B2 and B4
have sub-modules at a lower level. However, it is
unknown what kinds of activities each of the modules
comprises of. Although, the interface in <Figure 12>
gives abstract information, we can see detailed ac—
tivities information tentatively by placing a mouse
on the modules. For example, among the modules
at the first level, we can see the module B composed
of activities 12, 26, 16, 22, 11, 23, 17, 24, 8, 15,
25, 3, 10, 9, 27, 5 by positioning a mouse to the
module.

7. Conclusion

Process modeling, that represents activities and
their relationships, is helpful in understanding and
analyzing the process. However, since it is very dif—
ficult to fully understand the process with the in—
creasing number of activities in a process, structur—
ing the process has become essential.

This paper presents a new approach to structuring
the process on the basis of modular synthesis. In
connection therewith, the concept of a module is
newly suggested in a view point of a process. A

<Figure 12> Modules expressed in a hierarchical form

DSM 7|gte] ZRMA Fx35} WHE

module is defined as a group of activities which are
divided by split or merge points in a process flows.
In order to structure the process by the unit of a
module, which is called process modularization, ac-
tivities and their relationships need to be described
first. The DSM is employed as a process representa—
tion method because it has a lot of advantage in ex-
pressing the process and gives useful information in
analyzing the process. Process modularization is
composed of two main steps: ordering activities
based on the process flow and detecting modules.
For the purpose of modularizing the process, two
algorithms are developed. One is the RTS algorithm
for ordering activities and the other is the MF algo-
rithm for finding modules.

Modularizing a process based on the concept of
a module has several advantages: it conduces to
managing and analyzing a complex process, organiz—-
ing the cross—functional team efficiently, giving the
broad view points in process improvement, and in-
creasing the reusability of a process. Process modu-—
larization enables a process manager to manage and
analyze the process in an efficient manner. However,
it must be noticed that there is some room to be con-
sidered when modularizing the process. First, since
a module is not an independent unit entirely sepa-
rated from the whole process but a member of the
process, relationships between modules should also
be considered as a whole. Second, related to the first
remark, decision making that focuses on a specific
module would be in conflict with the purpose of the
whole process. Third, there are more meaningful
cases when a module is defined by not process flows
but resources such as people and equipments. For
example, if subsequent activities are performed by
different people in different organizational units, it
would make sense to allocate them to different
modules. Especially, this view point is very im-
portant when activities comprising the process de-
pend on people who have specific knowledge, expe-
rience, or skills. Nevertheless, considering that a
process view is an ever increasing importance in the
overall competitiveness of modern organizations,

the suggested approach is implicative in that the em-
phasis is on process flows rather than on functions.

To illustrate the proposed approach, the hypo-
thetical design process was used. Although the
process is not a real process, it is enough to under—
stand the operation involved in process modulariza-
tion and the promising value of the suggested
approach. However, in the real world, the process
1s more complicated than the process used in the il-
lustrative example in terms of the number of activ-
ities and the relationships between activities.
Therefore, it is necessary to apply this approach to
various processes which have the different degree
of complexity in activities and their relationships.
This is a further research issue to be considered.

References

[1] Bae, J., Bae, H., Kang, S., Kim, Y., “Automatic
Control of Workflow Processes Using ECA Rules”,
I[EEE Transactions on Knowledge and Data
Engineering, Vol. 16, No. 8, pp. 1010-1023, 2004.

[2] Booch, G., Rumbaugh, J., Jacobson, L., The Unified
Modeling Language: User Guide, Addison-Wesley,
1999.

[3] Browning, T. R., “Applying the design structure
matrix to system decomposition and integration
problems: a review and new directions”, IEEE
Transactions on Engineering Management, Vol. 48,
No. 3, pp. 292-306, 2001.

[4] Browning, T. R., “Process integration using the
design structure matrix”, System Engineering, Vol.
5, No. 3, pp. 180-193, 2002.

[5] Chen, S., Lin, L., “A Project Task Coordination
Model for Team Organization in Concurrent
Engineering”, CONCURRENT ENGINEERING:
Research and Applications, Vol. 10, No. 3, pp.
187-202, 2002.

[6] Chen, S., Lin, L., “Decomposition of interdependent
task group for concurrent engineering”, Computers
and Industrial Engineering, Vol. 44, pp. 435-459,
2003.

[7] 6. Courtois, P. J. (1985).0n Time and Space
Decomposition of Complex Structures, Commuini-
cation of ACM, 2. 590-603.

[8] Davenport, T., Process Innovation, Harvard
Business School Press, Cambridge, 1993.

[9] Deo, N., Graph Theory with Applications to

> |

SEZE G|

H37HM35/53

[12]

[15]

{18]

(19]

{20]

Engineering and Computer Science, Prentice~Hall,
Englewood Cliffs, 1974,

Eppinger, S. D., Whitney, D. E. and Gebala, D. A.
(1992). Organizing the tasks in complex design
projects: Development of tools to represent design
procedures, Proceeding NSF Design and Manufac—
turing System Conference, Atlanta, GA.
Eppinger, S. D., Whitney, D. E., Smith, R. P. and
Gebala, D. A. (1990). Organizing the tasks in com-
plex design projects, Proceedings Znd ASME
International Conference on Design Theory and
Methodology, Chicago, IL, 39-46.

Eppinger, S. D., Whitney, D. E., Smith, R. P. and
Gebala, D. A. (1994). “A model-based method for
organizing tasks in product development”, Research
n Engineering Design, 6 1-13.

Gebala, D. A., Eppinger, S. D., Methods for analyz-
ing design procedures, in: Proceedings of the 3
international conferences on design theory and
methodology, Miami FL, pp. 227-233, 1991.
Hammer, M., Champy, J., Reengineering the
Corporation: A Manifesto for Business Revolution,
Harper Business, New York, 1993.

Horowitz, E., Sahni, S., Fundamentals of Data
Structures. Rockville: Computer Science Press,
1982.

Johnson, R. C. and Benson, R. C, (1987). “A Basic
Two-level Monotonicity-Based Decomposition
Method”, Proceedings of the ASME Design
Automation Conference, Boston, MA, 41-48.
Johnson, R. C. and Benson, R. C. (1987). “A Basic
Two-level Monotonicity-Based Decomposition
Method”, Proceedings of the ASME Design Auto-
mation Conference, Boston, MA, 41-48.

Kim, Y., Kang, S., Kim, D., Bae, J., Ju, K., “WW~-
FLOW: Web-Based Workflow Management with
Runtime Encapsulation”, IEEE Internet Computing
Vol. 4, No. 3, pp. 55-64, 2000.

Kusiak, A., Engineering Design: Product, Proce~
sses, and Systems, Academic Press, San Diego,
1999.

Kusiak, A., Larson, T. N. and Wang, J. (1994).
Reengineering of design and manufacturing proc-
esses, Computers and Industrial Engineering,
26(3): 521-536.

(211

124]

[31]

[32]

Kusiak, A., Wang, J., “Decomposition of the design
process’, Journal of Mechanical Design, Vol. 115,
pp. 687-695, 1993.

Kusiak, A., Wang, J., “Efficient organizing of design
activities”, International Journal of Production
Research, Vol. 31, No. 4, pp. 7563-769, 1993.
Lindsay, A., Downs, D., Lunn, K., “Business proc-
esses—attempts to find a definition”, Information
and Software Technology, Vol. 45, pp. 1015-1019,
2003.

Mayer, R. J., Benjamin, P. C., Caraway, B. E,,
Painter, M. K.,A Framework and a Suite of Method
for Business Process Reengineering in Business
Process Change: Concepts, Methods and Tech-
nologies, Idea Group Publishing, Harrisburg, 1995.
Mayer, R. J., Menzel, C. P., Painter, M. K., deWitte,
P. S., Blinn, T., Perakath, B., Information integration
for concurrent engineering (IICE). IDEF3 process
description capture method report, Knowledge
Based Systems, College Station, Texas, 1995.
Park, H., Cutkosky, M. R., “Framework for Modeling
Dependencies in Collaborative Engineering Pro-
cess’, Research in Engineering Design, Vol. 11,
pp. 84-102, 1999.

Reisig, W., Petri Nets: An Introduction, Springer-
Verlag, Berlin Heidelberg, 1985.

Rogers, J. L. and Bloebaum, C. L. (1994).0Ordering
design tasks based on coupling strengths, Fro-
ceedings oth AIAA/NASA/USAF/ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimiza-
tion, Panama city, FL, 708-717.

Steward, D. V., “The design structure system: A
method for managing the design of complex sys-
tem”, IEEE Transactions on Engineering Manage~
ment, Vol. 28, pp. 71~74, 1981,

Tang, D., Zheng, L., Li Z., Li, D., & Zhang, S,
“Re-engineering of the design process for con-
current engineering”, Computers and Industrial
Engineering, Vol. 44, pp. 435-459, 2000.
Yassine, A., Braha, D., "Complex Concurrent
Engineering and the Design Structure Matrix
Method”, CONCURRENT ENGINEERING: Research
and Applications, Vol. 11, No. 3, pp. 165-176, 2002.
Yourdon, E., Modern Structured Analysis, Yourdorn,
Englewood Cliffs, NJ, 1989.

