• Title/Summary/Keyword: Design & Coding Standard

Search Result 93, Processing Time 0.027 seconds

Bandwidth-Efficient Live Virtual Reality Streaming Scheme for Reducing View Adaptation Delay

  • Lee, Jongmin;Lee, Joohyung;Lim, Jeongyeon;Kim, Maro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.291-304
    • /
    • 2019
  • This paper proposes a dynamic-tiling-based bandwidth-efficient (DTBE) virtual reality (VR) streaming scheme. We consider 360-degree VR contents with multiple view points such as the front, back, upper, and bottom sides. At a given time, the focus of a client is always bound to a certain view among multiple view points. By utilizing this perspective, under our proposed scheme, tiles with high encoding rates are selectively assigned to the focused view where multiple view points consist of multiple tiles with different encoding rates. The other tiles with low encoding rates are assigned to the remaining view points. Furthermore, for reducing view adaptation delay, we design a novel rapid view adaptation mechanism that selectively delivers an I-frame during view point updates by using frame indexing. We implement the proposed scheme on a commercial VR test bed where we adopt the MPEG media transport (MMT) standard with high-efficiency video coding (HEVC) tile modes. The measurement-based experiments show that the proposed scheme achieves an average data usage reduction of almost 65.2% as well as average view adaptation delay reduction of almost 57.7%.

Packet Loss Concealment Algorithm Based on Speech Characteristics (음성신호의 특성을 고려한 패킷 손실 은닉 알고리즘)

  • Yoon Sung-Wan;Kang Hong-Goo;Youn Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.691-699
    • /
    • 2006
  • Despite of the in-depth effort to cantrol the variability in IP networks, quality of service (QoS) is still not guaranteed in the IP networks. Thus, it is necessary to deal with the audible artifacts caused by packet lasses. To overcame the packet loss problem, most speech coding standard have their own embedded packet loss concealment (PLC) algorithms which adapt extrapolation methods utilizing the dependency on adjacent frames. Since many low bit rate CELP coders use predictive schemes for increasing coding efficiency, however, error propagation occurs even if single packet is lost. In this paper, we propose an efficient PLC algorithm with consideration about the speech characteristics of lost frames. To design an efficient PLC algorithm, we perform several experiments on investigating the error propagation effect of lost frames of a predictive coder. And then, we summarize the impact of packet loss to the speech characteristics and analyze the importance of the encoded parameters depending on each speech classes. From the result of the experiments, we propose a new PLC algorithm that mainly focuses on reducing the error propagation time. Experimental results show that the performance is much higher than conventional extrapolation methods over various frame erasure rate (FER) conditions. Especially the difference is remarkable in high FER condition.

An Efficient Parallelization Implementation of PU-level ME for Fast HEVC Encoding (고속 HEVC 부호화를 위한 효율적인 PU레벨 움직임예측 병렬화 구현)

  • Park, Soobin;Choi, Kiho;Park, Sang-Hyo;Jang, Euee Seon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.178-184
    • /
    • 2013
  • In this paper, we propose an efficient parallelization technique of PU-level motion estimation (ME) in the next generation video coding standard, high efficiency video coding (HEVC) to reduce the time complexity of video encoding. It is difficult to encode video in real-time because ME has significant complexity (i.e., 80 percent at the encoder). In order to solve this problem, various techniques have been studied, and among them is the parallelization, which is carefully concerned in algorithm-level ME design. In this regard, merge estimation method using merge estimation region (MER) that enables ME to be designed in parallel has been proposed; but, parallel ME based on MER has still unconsidered problems to be implemented ideally in HEVC test model (HM). Therefore, we propose two strategies to implement stable parallel ME using MER in HM. Through experimental results, the excellence of our proposed methods is shown; the encoding time using the proposed method is reduced by 25.64 percent on average of that of HM which uses sequential ME.

Development of Safe Korean Programming Language Using Static Analysis (정적 분석을 이용한 안전한 한글 프로그래밍 언어의 개발)

  • Kang, Dohun;Kim, Yeoneo;Woo, Gyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.4
    • /
    • pp.79-86
    • /
    • 2016
  • About 75% of software security incidents are caused by software vulnerability. In addition, the after-market repairing cost of the software is higher by more than 30 times than that in the design stage. In this background, the secure coding has been proposed as one of the ways to solve this kind of maintenance problems. Various institutions have addressed the weakness patterns of the standard software. A new Korean programming language Saesark has been proposed to resolve the security weakness on the language level. However, the previous study on Saesark can not resolve the security weakness caused by the API. This paper proposes a way to resolve the security weakness due to the API. It adopts a static analyzer inspecting dangerous methods. It classifies the dangerous methods of the API into two groups: the methods of using tainted data and those accepting in-flowing tainted data. It analyses the security weakness in four steps: searching for the dangerous methods, configuring a call graph, navigating a path between the method for in-flowing tainted data and that uses tainted data on the call graph, and reporting the security weakness detected. To measure the effectiveness of this method, two experiments have been performed on the new version of Saesark adopting the static analysis. The first experiment is the comparison of it with the previous version of Saesark according to the Java Secure Coding Guide. The second experiment is the comparison of the improved Saesark with FindBugs, a Java program vulnerability analysis tool. According to the result, the improved Saesark is 15% more safe than the previous version of Saesark and the F-measure of it 68%, which shows the improvement of 9% point compared to 59%, that of FindBugs.

Design of Scalable Intra-prediction Architecture for H.264 Decoders (H.264 복호기를 위한 스케일러블 인트라 예측기 구조 설계)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.77-82
    • /
    • 2008
  • H.264 is a video coding standard of ITU-T and ISO/IEC, and widely spreads its application due to its high compression ratio more than twice that of MPEG-2 and high image quality. It has different architecture depending on demands since it is a lied from small image of QVGA to large size of HD. In this paper, We propose a scalable architecture for intra-prediction of H.264 decoders. The proposed scheme has a scalable architecture that can accommodate up to 4 processing elements depending on performance demands and can reduce the number of access to memory using efficient memory management so as to be energy-efficient. We design the intra-prediction unit using Verilog-HDL and verily it by prototyping using an FPGA. The performance is analyzed using the results of design.

Design and Implementation of 8K UHD Encapsulation Method for Efficient Transmission and Reception based on MMT

  • Song, Seulki;Ryu, Youngsu;Wee, Jungwook;Park, Kyungwon;Kwon, Kiwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.860-872
    • /
    • 2018
  • In this Paper, we propose 8K UHD (Ultra High Definition) encapsulation method for efficient transmission and reception based on MMT (MPEG Media Transport). Broadcasting services for 8K UHD allow users to feel the maximized reality. However, present technology is difficult to provide 8K UHD in broadcasting networks, because the 8K UHD bitrate is too high to be transmitted in the current broadcasting networks. Research for transmitting 8K UHD is underway. In some researches, a receiver is implemented with four 4K UHD display instead of a 8K UHD display. In order to transmit 8K UHD within the limited transmission bitrate of broadcasting network, 8K UHD contents encoded by SHVC (Scalable High Efficiency Video Coding) and then transmitted over heterogeneous network. For using the broadcasting and communication networks, MMT standard is used. MMT is IP based transmission protocol as the next generation transmission protocol. According to the MMT standard, video stream encapsulated and transmitted in MMTP (MMT Protocol) packet. IP-based broadcasting and communication networks can be used to transmit simultaneously, and the receiver can synchronize and play it. We propose an encapsulation method that can efficiently transmit and receive 8K UHD. The proposed method increases a payload rate and decreases an initial delay at the receiver. We show that the efficiency of the proposed method is verified by experimental tests.

Architecture of an LDPC Decoder for DVB-S2 using reuse Technique of processing units and Memory Relocation (연산기와 메모리 재사용을 이용한 효율적인 DVB-S2 규격의 LDPC 복호기 구조)

  • Park Jae-Geun;Lee Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.31-37
    • /
    • 2006
  • Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. The standard for European high definition satellite digital video broadcast, DVB-S2 has adopted LDPC codes as a channel coding scheme. This paper proposes a DVB-S2 LDPC decoder architecture using a hybrid parity check matrix which is efficient in hardware implementation for both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the hybrid H-matrix scheme, the architecture of LDPC decoder for DVB-S2 can be very practical and efficient. In addition, we show a new Variable Node processor Unit (VNU) architecture to reuse the VNU for various code rates and optimized block memory placement to reuse. We design a DVB-S2 LDPC decoder of code rate 1/2 usng the proposed architecture. We estimate the performance of the DVB-S2 LDPC decoder and compare it with other decoders.

The Design of Motion Estimation Hardware for High-Performance HEVC Encoder (고성능 HEVC 부호기를 위한 움직임추정 하드웨어 설계)

  • Park, Seungyong;Jeon, Sunghun;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.594-600
    • /
    • 2017
  • This paper proposes a global search based motion estimation algorithm for high performance HEVC encoder and its hardware architecture. To eliminate temporal redundancy, motion estimation in HEVC inter-view prediction uses global search and fast search algorithm to search for a predicted block having a high correlation with the current PU in an interpolated reference picture. The global search method predicts the motion of all candidate blocks in a given search area, thus ensuring optimal results, but has a disadvantage of large computation time. Therefore we propose a new algorithm that reduces computational complexity by reusing SAD operation in global search to reduce computation time of inter prediction. As a result of applying the proposed algorithm to standard software HM16.12, the computation time was reduced by 61%, BDBitrate by 11.81%, and BDPSNR by about 0.5% compared with the existing search algorithm. As a result of hardware design, the maximum operating frequency is 255 MHz and the total number of gates is 65.1K.

Design of Architecture of Programmable Stack-based Video Processor with VHDL (VHDL을 이용한 프로그램 가능한 스택 기반 영상 프로세서 구조 설계)

  • 박주현;김영민
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.31-43
    • /
    • 1999
  • The main goal of this paper is to design a high performance SVP(Stack based Video Processor) for network applications. The SVP is a comprehensive scheme; 'better' in the sense that it is an optimal selection of previously proposed enhancements of a stack machine and a video processor. This can process effectively object-based video data using a S-RISC(Stack-based Reduced Instruction Set Computer) with a semi -general-purpose architecture having a stack buffer for OOP(Object-Oriented Programming) with many small procedures at running programs. And it includes a vector processor that can improve the MPEG coding speed. The vector processor in the SVP can execute advanced mode motion compensation, motion prediction by half pixel and SA-DCT(Shape Adaptive-Discrete Cosine Transform) of MPEG-4. Absolutors and halfers in the vector processor make this architecture extensive to a encoder. We also designed a VLSI stack-oriented video processor using the proposed architecture of stack-oriented video decoding. It was designed with O.5$\mu\textrm{m}$ 3LM standard-cell technology, and has 110K logic gates and 12 Kbits SRAM internal buffer. The operating frequency is 50MHz. This executes algorithms of video decoding for QCIF 15fps(frame per second), maximum rate of VLBV(Very Low Bitrate Video) in MPEG-4.

  • PDF

Design of Prediction Unit for H.264 decoder (H.264 복호기를 위한 효율적인 예측 연산기 설계)

  • Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.47-52
    • /
    • 2009
  • H.264 video coding standard is widely used due to the high compression rate and quality. The motion compensation is the most time-consuming and complex unit in the H.264 decoder. The performance of the motion compensation is determined by the calculation of pixel interpolation and management of the reference pixels. The reference pixels read from external memory using efficient memory management for data reuse is necessary along with the high performance interpolators. We propose the architecture of a motion compensation unit for H.264 decoders. It is composed of 2-dimensional circular register files, a motion vector predictor and high performance interpolators with low complexity. The 2-dimensional circular register files reuse reference pixel data as much as possible, and feed reference pixel data to interpolators without any latency and complex logic circuits. We design a motion compensation unit and a intra-prediction unit and integrate them into a prediction unit and verify the operation and the performance.