• Title/Summary/Keyword: Description Mechanism

Search Result 145, Processing Time 0.028 seconds

Expressive Methods of Uncanny Image in Contemporary Fashion (현대패션에 나타난 언캐니 이미지의 표현방법)

  • Yu, Arim;Suh, Seunghee
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.6
    • /
    • pp.99-111
    • /
    • 2015
  • The purpose of this study is to identify the expression methods of uncanny images shown in contemporary fashion through the visual expression methods of plastic arts. The study results are as following. First, there is a concept-forming element of 'The return of Repressed', which is a psychological mechanism for generating uncanny sets to the component of 'repression' and 'return'. 'Repression' herein consisted of 'unconsciousness', 'the other', and 'anxiety', while the return was composed of 'trauma' and 'repetition compulsion'. Second, there are visual expression methods of the uncanny in contemporary art. The subject of 'repressed things' was expressed as grotesque and having a terrible look. 'Fragmented body' was analyzed as 'dismantling' by mutilation, 'combination' placing cut body parts in other places, and 'damage' suffering from an illness or accident. 'Fear of death' was shown as 'anatomy' reminiscent of death and 'iconography of death' meaning return of the dead. 'Post-human' was a surrealistic being such as a monster and mechanized human, and was analyzed as 'gene variation' and 'cyborg'. Third, the methods of visual expression of the uncanny reflected on contemporary fashion was analyzed as 'fragmented body', 'fear of death', and 'post-human'. 'Fragmented body' appeared as the object reminiscent of the fragmented body, 'dismantling and combination of the body', and 'damage of the body' through the distortion of the clothing construction principle. 'Fear of death' visualized the characteristic elements of the subject reminiscent of death as 'iconography of death' and 'symbolic object of death' through the motif. 'Post-human' was the description of the subject beyond the body's function and form, and was shown as 'gene variation' and 'cyborg'.

A Study on the Development of Geometry as the Natural Laws and the Concepts of Space - Focus on the Whitehead's theories of natural laws - (자연법칙으로서 기하학과 공간 개념의 전개에 관한 연구 - 화이트헤드의 자연법칙 학설을 중심으로 -)

  • Hwang, Tae-Joo
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.2
    • /
    • pp.90-98
    • /
    • 2010
  • The concepts of laws like regularity or persistence or recurrence those are discovered in nature, became the essential elements in speculative philosophy, study and scientific technology. Western civilization was spread out by these natural laws. As this background, this study is aimed to research the theories of natural laws and the development of geometry as the descriptive tools and the development aspects of the concepts of space. According to Whitehead's four theories on the natural laws, the result of this study that aimed like that as follows. First, the theories on the immanence and imposition of the natural laws were the predominant ideas from ancient Greek to before the scientific revolution, the theory on the simple description like the positivism made the Newton-Cartesian mechanism and an absolutist world view. The theory on the conventional interpretation made the organicism and relativism world view according to non-Euclidean geometry. Second, the geometrical composition of ancient Greek architecture was an aesthetics that represented the immanence of natural laws. Third, in the basic symbol of medieval times, the numeral symbol was the frame of thought and was an important principal of architecture. Fourth, during the Renaissance, architecture was regarded as mathematics that made the order of universe to visible things and the geometry was regarded as an important architectural principal. Fifth, according to the non-Euclidean geometry, it was possible to present the natural phenomena and the universe. Sixth, topology made to lapse the division of traditional floor, wall and ceiling in contemporary architecture and made to build the continuous space. Seventy, the new nature was explained by fractal concepts not by Euclidean shapes, fractal presented that the essence of nature had not mechanical and linear characteristic but organic and non-linear characteristic.

Development of a 6 degrees-of-freedom micro stage for ultra precision positioning (초정밀작업을 위한 6자유도 마이크로 스테이지의 개발)

  • Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.

Semantic Image Retrieval Using Color Distribution and Similarity Measurement in WordNet (컬러 분포와 WordNet상의 유사도 측정을 이용한 의미적 이미지 검색)

  • Choi, Jun-Ho;Cho, Mi-Young;Kim, Pan-Koo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.509-516
    • /
    • 2004
  • Semantic interpretation of image is incomplete without some mechanism for understanding semantic content that is not directly visible. For this reason, human assisted content-annotation through natural language is an attachment of textual description to image. However, keyword-based retrieval is in the level of syntactic pattern matching. In other words, dissimilarity computation among terms is usually done by using string matching not concept matching. In this paper, we propose a method for computerized semantic similarity calculation In WordNet space. We consider the edge, depth, link type and density as well as existence of common ancestors. Also, we have introduced method that applied similarity measurement on semantic image retrieval. To combine wi#h the low level features, we use the spatial color distribution model. When tested on a image set of Microsoft's 'Design Gallery Line', proposed method outperforms other approach.

An Adaptive Lesson Plan Generator Based on Case-Based Planning (케이스기반플랜기법에 의한 적응력있는 레슨플렌생성기)

  • Jae-innLee
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.2
    • /
    • pp.85-114
    • /
    • 1994
  • One of the major research topics in the area of the development of intelligent tutoring system(ITS)is the control of instructional mechanism consisting of lesson plans,curriculum plans,and discourse plans.This paper describes a method of building the lesson plans among these three instructional plans based on the case-based planning.It is more efficient to retrieve the lesson plan from the plan memoru than to generate it whenever an instructional goal is selected.The retrieved lesson plan may be modified to build more adaptive plan for the current goal.We have developed a lesson plan generator that has such capabilities as a component of an ITS for teching indefinite intergration.We also have devised a description language to represeint the generalized form for the given arithmetic expression as an instructional goal and a curriculum tree to represent the lesson units required to master the subject matter.The result of this research could be used either by a developer of the lesson plan generator in the other area of ITS or by human teacher as a curriculum in the actual class.

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion

  • Lee, Weon-Gyu;Rhee, Young Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.858-864
    • /
    • 2014
  • Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Integration Approach Environment and Health through Introduce to Health Impact Assessment (보건영향평가제도도입을 통한 보건과 환경의 통합적 접근방안 연구)

  • Kim Im-Soon;Han Sang-Wook;Kim Yoon-Shin;Kim Dae-Seon;Moon Jung-Suk;Lee Cheol-Min
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.34-47
    • /
    • 2004
  • Although Environmental Impact Assessment(EIA) in Korea has been improved markedly over the past two decades, by enlarging the range of projects for assessment, instituting pub lic participation and environmental monitoring, and similar measures, it remains deficient in its coverage of human health in Environmental Impact Statements(EISs). Health Impact Assessment(HIA) can supply the necessary correctives. HIA is a combination of procedures, methods and tools by which a policy, programme, projects or legislative procedure may be judged for its potential effects on the health of a population, and the distribution of these effects within it. The principle of health protection is, however, established as a primary concern in EIA processes, in practice health is scarcely mentioned or the discussion is limited to a description of effects through the biophysical environment. The whole range of possible effects on health, including those mediated by socio-economic factors is often ignored, and no effective mechanism are in place to successfully incorporating health criteria and expertise into environmental, assessment(EA) that include ElA, SEA. These are foremost among the current issues facing EIA in Korea.

A Study on Shape Variability in Canonical Correlation Biplot with Missing Values (결측값이 있는 정준상관 행렬도의 형상변동 연구)

  • Hong, Hyun-Uk;Choi, Yong-Seok;Shin, Sang-Min;Ka, Chang-Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.955-966
    • /
    • 2010
  • Canonical correlation biplot is a useful biplot for giving a graphical description of the data matrix which consists of the association between two sets of variables, for detecting patterns and displaying results found by more formal methods of analysis. Nevertheless, when some values are missing in data, most biplots are not directly applicable. To solve this problem, we estimate the missing data using the median, mean, EM algorithm and MCMC imputation methods according to missing rates. Even though we estimate the missing values of biplot of incomplete data, we have different shapes of biplots according to the imputation methods and missing rates. Therefore we use a RMS(root mean square) which was proposed by Shin et al. (2007) and PS(procrustes statistic) for measuring and comparing the shape variability between the original biplots and the estimated biplots.

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF