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Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes

can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures.

Because the protein supplies such noisy environment around pigments that conventional wisdom expects very

short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence

have become an interesting topic in both experiment and theory. We have previously studied the quantum

coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping

bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville

equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many

defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against

such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall

back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known

to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate

accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for

certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against

the PBME results at physiological temperature, and observe more sophisticated changes of density matrix

elements from HEOM. In PBME, the population of states with intermediate energies display only mono-

tonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long

time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are

briefly discussed as a concluding remark.
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Introduction

Photosynthetic process begins with the transformation of

light energy to electronic excitation energy, which is trans-

ferred through the pigment-protein complex. This excitonic

energy transfer (EET) is an important topic in understanding

natural photosynthesis and in constructing artificial photo-

synthetic materials. Quantum yield in the EET can be very

high, even close to unity in some instances, and many

researches have made continuous progresses in finding the

reason. Recently, long-lived quantum coherence in EET of

photosynthetic system is observed in some photosynthetic

bacteria at cryogenic and physiological temperatures.1-4 It is

a significant discovery because the pigment-protein complex

is so complicated that a common sense will expect that the

energy would be transferred through incoherent decay of the

initially excited state.5 Accordingly, many studies followed

to elucidate the reasons behind such unexpected results.6-9

Some of the pigment-protein complexes that display quan-

tum coherence are from cryptophtyes. Cryptophtyes has not

only chlorophyll but also phycobiliproteins that can absorb

almost all regions of visible light.10 For example, Phyco-

cyanin PC645 pigment-protein complex has a primary role

of the EET in photosynthesis of Chroomonas CCMP270. It

consists of two distinct monomer which has one dihydro-

biliverdin (DBV), two phycocyanobilins (PCB), and one

mesobiliverdin (MBV) together with four protein subunits

enfolding pigment groups.11 These bilins have maximum ab-

sorption wavelengths at 585, 645, and 622 nm. Because the

phycobiliprotein can absorbs light with longer wavelength

than chlorophyll, the algae can perform photosynthesis

efficiently even in deep sea environment.10 Experimentally,

it turned out that the complex shows quantum coherence in

room temperature (294 K).3 In this experiment, the central

DBV dimer was initially excited, and the excitonic energy

passed through MBVs and finally excited PCBs.3

Theoretically, such a pigment-protein complex system is

usually treated with a subsystem-bath model. The finite elec-

tronic states of pigments can be treated as a finite subsystem

(often call just a “system”), and then the protein complex

affects the subsystem as a bath. Thus, the model is com-
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posed of a subspace that follows quantum mechanics and the

remaining subspace that is described by classical mechanics.

Of course, the two subspaces “cross-talk” to each other and

the total system follows the quantum-classical mechanics.

The quantum-classical Liouville equation (QCLE) is the

most widely adopted starting point for treating such a system.12

Unfortunately, even the most simple bath model has almost

an infinite number of degrees of freedom and the computa-

tional cost can become easily unaffordable. Therefore, many

approximate methods have been proposed as alternatives

such as iterative linearized density matrix (ILDM)13 approach

and Poisson bracket mapping equation (PBME)14,15 form-

alism. Reduced hierarchical equation of motion (HEOM)16-18

is another propagation method for the subsystem-bath model.

Unlike ILDM or PBME, reduced HEOM has many restric-

tions and cannot be applied to general subsystem-bath models.

However, it is numerically exact and can be used to supply a

reference to other approximation methods.

Previously, we have calculated the EET dynamics in PC645

by PBME.19 Here, we perform HEOM simulation to provide

more accurate results of the same dynamics, with a purpose

of providing benchmark references toward further develop-

ing PBME. We provide more detailed derivation of the

equation, and compare the results of dynamics simulations

of the same subsystem-bath complex with HEOM and

PBME. Future prospects are also discussed in view of how

to utilize the present results.

Mathematical Formulation

The formulation of reduced hierarchy equation of motion

(HEOM) is already published.20,21 For completeness, the

outline of the equation and an algorithm for solving this

equation numerically will be explained here. With HEOM,

the time-dependent solution is evaluated for the following

Hamiltonian, which describes the excitation energy transfer:

. (1)

The subsystem Hamiltonian, Hs represents the pigment part

of photosynthetic pigment-protein complex, and the bath

Hamiltonian, Hb describes the protein environment. Hs-b

corresponds to the interaction of the subsystem and the bath.

Hs is formulated by the Frenkel exciton model,

. (2)

The basis of the subsystem is a set of single pigment excited

states. Namely,  means a state with the excited k-th

pigment with other pigments in their ground states. Ek is the

excitation energy of the k-th pigment, and Jkl is excitonic

coupling between k-th and l-th pigments. A generally

accepted model for describing environment is a collection of

phonons linearly coupled to excitation energies of the

corresponding pigments:

.  (3)

Here, pξ and qξ are dimensionless momentum and position

of the ξ-th phonon mode. The interactions between the

system and bath are described as

. (4)

Vk is defined as Vk = , and uk = −Σξ cξkqξ, where cξk is

the linear coupling coefficient between the subsystem and

the bath. All the phonon modes of the bath are assumed to be

independent from each other. The Liouvillian of the total

system Ltotal, the subsystem Ls, the bath Lb, and the bath-

subsystem coupling Ls-b are defined to match their corre-

sponding Hamiltonian components. The time evolution of

the total density matrix is described as

.(5)

The formal solution of this equation can be written as the

following:

 . (6)

By reducing the system into the subsystem, the evolution of

the operators is simplified. For this, the bath part is ensemble-

averaged, and only the subsystem part remains for detailed

descriptions. The density matrix of the total system ρtotal(t) is

reduced to ρ(t) by ρ(t) = Trb{ρtotal(t)}. For simplicity, we

assume that the total density matrix at the initial state can be

constructed as a tensor product of subsystem and bath com-

ponents: ρtotal(0) = ρ(0)⊗exp(−βHb)/Z, where Z is a (canoni-

cal) partition function defined as Z = Trb exp(−βHb). The

interaction picture is considered here such that Hs and Hb

evolve operators, and Hs-b propagates wavevectors. The tilde

sign denotes this interaction picture nature.

With the assumption of the decomposition of initial total

density matrix, the reduced composition of Liouvillian and

total density matrix can be decomposed into the reduced

time evolution operators  and  as

(7)

and

 (8)

where the bath average of an operator is .

When the exponential of the superoperator is explicitly

expanded,

. (9)
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From , the n-th order term

in the above equation is

(10)

when we adopt a vectorized time notation, ds = dsn�ds2ds1.

There are a total of 2n individual terms in the commutator

complex in the above equation. These can be formally

enumerated as a sum as

(11)

where each αi can take either 0 or 1. Of course, the causality

condition is taken care of by the time ordering operator T+

such that the set of { } is rearranged in time-increas-

ing order. By adopting Eq. (4),

 (12)

 .

Now, it is easy to imagine that the last bath averaging term in the

above equation will vanish when n is an odd integer due to the

symmetry of the harmonic oscillator. In fact, from Wick’s theo-

rem,22 it can be shown that this bath averaging term can be re-

duced into products of correlation terms from the Gaussian

nature of the harmonic oscillators:

, (13)

where the summation runs over all possible ways of forming

pairs out from 2n operators for the bath averaging. In the

classical case, this is equivalent to Isserlis’ theorem23 of

multivariate normal distributions, composed by the Gaussian

harmonic oscillator position distributions. This fact also

brings an important recursive characteristic between con-

secutive non-vanishing terms A2n and A2n+2:

. (14)

This leads to the time evolution equation for the reduced

density

, (15)

where  is involved in the evolution by bath coupled to j-

th site,

 (16)

The superoperator notations are defined as 

(commutator) and  (anticommutator). The

derivations of the recursion relationship and the formulation

of  can be found in the Appendix. The symmetrized corre-

lation function of uk(t), namely , and

the response function,  describe the

fluctuation of the excitation energy of the k-th site and the

dissipation of the bath coupled to the k-th site. Then, the

spectral density of the k-th site, Jk(ω), is defined by the

imaginary part of the inverse Fourier transformation of the

response function

, (17)

where . Since the response

function is odd by definition, the  is a pure

imaginary function, and Eq.  tells us that the spectral density

is also an odd function. Therefore,

 

. (18)

The quantum fluctuation-dissipation theorem24 constructs

the relationship between the symmetrized correlation func-

tion and the response function χk(t) and the spectral density

Jk(ω) as

. (19)

The reorganization energy λk can be reproduced with spectral

density by using a relationship . We

construct the bath model with Drude-Lorentz spectral den-

sity, which approximately follows Markov process as 

= . This spectral density describes overdamp-

ing Brownian motion and was widely used in experimental

and theoretical studies.15,25-27 Then, the response function

has the forms as  in t > 0, and the correlation

function is approximated provided that the temperate is high

enough. Namely,  as . With this

condition, the time evolution of  is given by

. (20)

The operators in this equation are defined as

, (21)

. (22)

As  does not depend on s, Eq. (20) can be represented

in a Schrödinger picture as

.

(23)
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(24)

with vector index n. From its definition, σ(0,0,…,0)(t) is

identical to ρ(t). The time evolution of the auxiliary operator

is related to the other auxiliary operators with higher and

lower index as

.

(25)

When the index (n1, n2,..., nN) of the auxiliary operator is 0,

the third term in the above equation vanishes. Because the

upper bound of the index is infinite in theory, the increasing

index of the auxiliary operators must be truncated to

calculate the time evolution equation in finite time. If the

characteristic value of the subsystem part, ωe, is smaller than

, the decay by the bath is faster than the evolution

of the subsystem Hamiltonian. This approximation simpli-

fies Eq. (25) as

, (26)

if

. (27)

The characteristic value can actually be estimated as the

spectral range of the electronic Hamiltonian. Although σ is

generated from ρ, it can be evaluated simultaneously with it

using their time evolution equations. Therefore, by solving a

set of linear differential equations with ρ and σ(1,0,…,0), σ(0, 1,

…, 0), …, , we can get the time evolution of the density

matrix. The number of auxiliary operators needed to perform

HEOM is

. (28)

Dynamics of PC645

We assumed the identical bath to different sites, τ1(= γ1
−1)

= τ2 = … = τN = τ and λ1 = λ2 = … = λN. Previous studies

used the sum of two Drude-type spectral densities with

different relaxation time.13,19 However, for simplicity, we

used only one density in this study, with shorter relaxation

time τ = γ −1 = 50 fs together with the same reorganization

energy as before as λ = 260 cm−1. We also adopted the

excitation energy of each bilin and their excitonic coupling

from the data in our previous study.19 For comparison, we

calculated the dynamics by PBME with the same spectral

density as in HEOM simulation. At least in the PBME case,

we could observed that switching from the composite

spectral density to a single Drude-type density has only a

negligible effect on the dynamics.

Figure 1 shows the population dynamics of PC645 from

HEOM simulations in a sub-picosecond scale. We can see a

fast decay of the initially excited DBVc with strong coherence

with DBVd. It is expected because the coupling between

DBVs are the strongest in all couplings between bilins. The

population decay of the dimer component is compensated by

a nearly linear increase in the populations of other bilins.

The coherent oscillation stays up to almost 300 fs. This

dynamics resembles the results from previous PBME simu-

lation at least in a qualitative sense.

Figure 2 displays the comparison between the dynamics

from HEOM and PBME. Comparing (a) and (b), it is

apperant that the decay rate is faster in HEOM than that in

PBME and the lifetime of the coherence is rather shorter.

The most promenent difference appears in two MBVs of (c)
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Figure 1. The population dynamics of all bilins in PC645 at room
temperature (300 K) by HEOM.

Figure 2. Comparison of population dynamics by HEOM (left)
and PBME (right).
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and (d). In PBME, the populations of MBVs almost linearly

increase as diplayed by PCBc158. However, in HEOM, the

population of MBVs increases quite fast in a short time

regime (~200 fs) and the population of PCBc158 starts to be

larger than MBV populations after ~500 fs. Considering the

Boltzmann factor, the populations of DBVs will be the least,

followed by those of MBVs and PCBs. The energies of the

same class of chromophores are of course similar. Namely,

each group of DBVs, MBVs, and PCBs are close in energy.

However, the energy gaps between different classes are

much larger. For example, the DBV-MBV gap is 864 cm−1

and the MBV-PCB gap is 484 cm−1 respectively on average,

with the MBV energy in the middle. Thus, we speculate that

~500 fs time scale is too short to induce a thermal equi-

librium among these different classes of chromophores.

However, this timescale is still long enough to display equi-

brium-like behavior inside the same class of chromophores

(within DBVs, within MBVs, and within PCBs). The largest

absolute coupling between any DBV and any MBV (43.9

cm−1) is somewhat larger than the maximum of absolute

coupling between DBVs and PCBs (−46.8 cm−1). We may

attribute the phenomenon that the populations of DBVs are

transferred more to MBVs than to PCBs in the short time

regime to this coupling strength difference. However, DBV

and MBV energies are closer than in DBV/PCB pairs, and

this closer match will likely induce better condition for more

feasible energy transfer. The excitations of MBVs do not

show oscillations and their transfer to PCBs is quite mono-

tonic.

From an operational point of view, the computational cost

of HEOM can be estimated from the ratio between the

spectral range ωe of Hamiltonian and γ. In PC645, ωe = 1834

cm−1 is approximately 17 times of γ. If we consider 

~1.5ωe/γ, the number of auxiliary operators needed to

perform HEOM is almost 18 million. In the PC645 case,

considering that the size of a single auxiliary operator is 8¥8,

the size of the data needed at one time step of integration is

almost 109 complex numbers. This translates to 16 Gigabytes

of memory usage when the double precision representation

is adopted for complex numbers. The computational time

and the storage requirement increase rapidly with the number

of elements in the auxiliary operators. Although utilizing

parallel computation platforms with distributed memory will

alleviate the computational cost dramatically as HEOM

algorithm can be trivially parallelized, the high order scaling

with respect to the size of the auxiliary operator (or the

dimensionality of the subsystem) will be too severe for

applying HEOM to any systems much larger than the pre-

sently studied PC645.

Conclusions

HEOM is known to give the accurate solution to harmonic

oscillator bath models with linear coupling to subsystems.

We have redisplayed the detailed working formula of HEOM

together with a model Hamiltonian of PC645 that has been

adjusted for application to HEOM. The excitonic state

populations evolved qualitatively similar to the previously

reported evolution patterns from PBME simulations. The

coherent oscillation between populations on monomers of

DBVs was apparent and their transfer to PCBs was confirm-

ed. Distinct transfer characteristics in HEOM simulations

compared to PBME results were that excitonic energy pass-

ed through MBVs before it was transferred to PCBs. The

density elements on MBVs increased faster in short time

regime, after which they decreased with increasing density

elements on PCBs. This aspect was not captured in PBME

simulations and populations on MBVs and PCBs increased

together.

The PBME method is an approximation and possesses

quantitative error. The error also is known to become severer

as the time scale increases. Most importantly, the method

cannot attain thermal equilibrium condition in the long time

limit and the final populations do not follow Boltzmann

distributions. The HEOM method does achieve the thermal

equilibrium (confirmed also with the PC645 case) and

shows quantitatively accurate results in both short-time and

long-time regimes. The improvement of the original PBME

method should reproduce these aspects. For example, the

dynamics of PC645 should display an increase followed by a

decrease in the populations of MBVs, instead of monotonic

increases. The behaviors observed from HEOM simulations

can definitely be used as references for improving PBME

during future studies.
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Appendix

A1. Recursion formula in the time propagator

Let us start from

=

(A1)

.

By partially applying Wick’s theorem and by factorizing

terms that involve , ,

…, , , one can have
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1 α
2n 2+

–

s2n 2+( )…Ṽk
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α
2

s2( )…Ṽk
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s2n 2+( )

× ũk
1 α

2n 2+
–

s2n 2+( )…ũk
1 α

2
–

s2( )ũk
1 α

1
–

s1( )ũk
α
1

s1( )ũk
α
2

s2( )…ũk
α
2n 2+

s2n 2+( )〈 〉b

ũk s2n 2+( )ũk s2n 1+( )〈 〉b ũk s2n 2+( )ũk s2n( )〈 〉b
ũk s2n 2+( )ũk s2( )〈 〉b ũk s2n 2+( )ũk s1( )〈 〉b

2n 2+( )!h
2n 2+

i–( )
2n 2+

-------------------------------A2n+2 =  
α
2n 2+

α
2n 1+

∑  
α
i

{ }′

∑ 1–( )
α
2n 1+

+α
2n 2+

1–( )
α
1
+α

2
+…+α

2n

× T+  
0

t

∫ ds ũk

1 α–
2n 2+

s2n 2+( )ũk

α
2n 1+

s2n 1+( )ũk

α
2n 1+

s2n 1+( )ũk

α
2n 2+

s2n 2+( )〈 〉b
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(A2)

+�.

Here, the summation over  denotes a sum over α1 through

α2n only. This partial summation can be back transformed to

Liouvillian operated form A2n as

× .(A3)

We have only shown the case with  in an

explicit manner. However, one may show that the remaining

2n sums with , …, ,

 display similar behaviors. Thus,

× (A4)

and

× . (A5)

In fact, the second order term involves the initial density as

. (A6)

If we can find out a superoperator  that satisfies

(A7)

Eq. (A5) becomes

. (A8)

Because

(A9)

we are naturally led to

(A10)

Thus,

, (A11)

which is equivalent to 

(A12)

as in Eq. (14).

A2. Derivation of the superoperator 

The superoperator was defined in Eq. (A7) in the above.

Expanding the commutators of the right hand side of this

equation leads to

.

(A13)

Note that the total density ρt is used in this expression. For

visual clarity, we will drop the tilde signs of the operators

and implicitly denote them within interaction representation.

From ,

(A14)

with equilibrium bath density Req. By separating bath and

system part, it is easy to see that the right hand side further

transforms to

 (A15)

 

 .

Here, we have adopted time translations for obtaining the

bath time correlation functions. Of course, different modes

with different k and l indices are not correlated and only the

non-vanishing self-correlations are included in the above

expression. Introducing symmetrized correlation 

 and response ,

one obtains

, (A16a)

. (A16b)

Therefore,

×Ṽk

1 α
2n 2+

–

s2n 2+( )Ṽk

1 α
2n 1+

–

s2n 1+( )[Ṽk

1 α
2n

–

s2n( )…Ṽk

1 α
2

–

s2( )Ṽk

1 α
1

–

s1( )

×ρ̃ 0( )Ṽk

α
1

s1( )Ṽk

α
2

s2( )…Ṽk

α
2n

s2n( )]Ṽk

α
2n 1+

s2n 1+( )Ṽk

α
2n 2+

s2n 2+( )

× ũk
1 α

2n
–

s2n( )…ũk
1 α

2
–

s2( )ũk
1 α

1
–

s1( )ũk
α
1

s1( )ũk
α
2

s2( )…ũk
α
2n

s2n( )〈 〉b

αi{ }′

R.H.S. = 
2n( )!h

2n

i–( )2n
-------------------

T+  
0

t

∫ ds2n 2+ ds2n 1+ H̃s b– s2n 2+( ), H̃s b– s2n 1+( ), A2n[ ][ ]
b
 +…

ũk s2n 2+( )ũk s2n 1+( )〈 〉b

ũk s2n 2+( )ũk s2n( )〈 〉b ũk s2n 2+( )ũk s2( )〈 〉b
ũk s2n 2+( )ũk s1( )〈 〉b

R.H.S. = 
2n 1+( )!h

2n

i–( )2n
--------------------------

T+  
0

t

∫ ds2n 2+ ds2n 1+ H̃s b– s2n 2+( ), H̃s b– s2n 1+( ), A2n[ ][ ]
b

A2n 2+  = 
1

2 n 1+( )h
2

----------------------–

T+  
0

t

∫ ds2n 2+ ds2n 1+ H̃s b– s2n 2+( ), H̃s b– s2n 1+( ), A2n[ ][ ]
b

A2 = 
1

2h
2

-------- T+  
0

t

∫ ds2ds1 H̃s b– s2( ), H̃s b– s1( ), ρ̃ 0( )[ ][ ]
b

W̃

 
0

t

∫ dsW̃ s( )ρ̃ 0( )=
1

2h
2

--------– T+  
0

t

∫ ds2ds1 H̃s b– s2( ), H̃s b– s1( ), ρ̃ 0( )[ ][ ]
b
,

A2n 2+  = 
1

n 1+
----------T+  

0

t

∫ dsW̃ s( )A2n

A2 =  
0

t

∫ dsW̃ s( )ρ̃ 0( )

A2n = 
1

n!
-----T+  

0

t

∫ dsW̃ s( )…W̃ s2( )W̃ s1( )ρ̃ 0( )

Ũ t( )ρ̃ 0( ) = T+ exp  
0

t

∫– dsW̃ s( )[ ]ρ̃ 0( )

∂
∂t
---- ρ̃ t( ) = T+W̃ t( )ρ̃ t( )

W̃

 
0

t

∫ dsW̃ s( )ρ̃ 0( )=

−
1

h2
----  

0

t

∫ ds2  
0

s
2

∫ ds1H̃s b– s2( ) H̃s b– s1( )ρ̃t 0( )−ρ̃t 0( )H̃s b– s1( )( )
b

+
1

h2
----  

0

t

∫ ds2  
0

s
2

∫ ds1 H̃s b– s1( )ρ̃t 0( )−ρ̃t 0( )H̃s b– s1( )( )H̃s b– s2( )
b

Hs b–  =  ∑ Vkuk

Hs b– s2( ) Hs b– s1( )ρt 0( ) − ρt 0( )Hs b– s1( )( )  〈

− Hs b– s1( )ρt 0( ) −ρt 0( )Hs b– s1( )( )Hs b– s2( )〉b

=  
kl

∑ [trb Vk s2( )uk s2( )Vl s1( )ul s1( )ρ 0( )Req{ }

− trb Vk s2( )uk s2( )ρ 0( )ReqVl s1( )ul s1( ){ }

− trb Vk s1( )uk s1( )ρ 0( )ReqVl s2( )ul s2( ){ }

+trb ρ 0( )ReqVk s1( )uk s1( )Vl s2( )ul s2( ){ }

R.H.S.=  
k

∑ [ uk s2 s1–( )uk 0( )〈 〉bVk s2( )Vk s1( )ρ 0( )

− uk 0( )uk s2 s1–( )〈 〉bVk s2( )ρ 0( )Vk s1( )

− uk s2 s1–( )uk 0( )〈 〉bVk s1( )ρ 0( )Vk s2( )

+ uk 0( )uk s2 s1–( )〈 〉bρ 0( )Vk s1( )Vk s2( )]

Sk t( ) =
uk t( ), uk 0( ){ }〈 〉b/2 χk t( ) = i uk t( ), uk 0( )[ ]〈 〉b/h

uk s( )uk 0( )〈 〉b = Sk s( ) − 
ih

2
----χk s( )

uk 0( )uk s( )〈 〉b = Sk s( ) +  
ih

2
----χk s( )

 
0

t

∫ dsW̃ s( )ρ̃ 0( ) = −
1

h2
----  

0

t

∫ ds2  
0

s
2

∫ ds1  
k

∑ Sk s2 s1–( )−
ih

2
----χk s2 s1–( )⎝ ⎠

⎛ ⎞

× Vk s2( )Vk s1( )ρ 0( )−Vk s1( )ρ 0( )Vk s2( )( )

+ 
1

h2
----  

0

t

∫ ds2  
0

s
2

∫ ds1  
k

∑ Sk s2 s1–( )+
ih

2
----χk s2 s1–( )⎝ ⎠

⎛ ⎞
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(A17)

This reduces to

, (A18)

which can be re-expressed in a compact form as

. (A19)
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