Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.858

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion  

Lee, Weon-Gyu (Center for Self-assembly and Complexity, Institute for Basic Science (IBS))
Rhee, Young Min (Center for Self-assembly and Complexity, Institute for Basic Science (IBS))
Publication Information
Abstract
Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.
Keywords
Photosynthesis; Excitation energy transfer; Quantum classical dynamics; Hierarchy equation; Phycocyanin 645;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sarovar, M.; Ishizaki, A.; Fleming, G. R.; Whaley, K. B. Nature Phys. 2010, 6, 462.   DOI
2 van der Weij-De Wit, C. D.; Doust, A. B.; van Stokkum, I. H. M.; Dekker, J. P.; Wilk, K. E.; Curmi, P. M. G.; van Grondelle, R. Biophys. J. 2008, 94, 2423.   DOI
3 Wedemayer, G. J.; Kidd, D. G.; Wemmer, D. E.; Glazer, A. N. J. Biol. Chem. 1992, 267, 7315.
4 Kim, H.; Nassimi, A.; Kapral, R. J. Chem. Phys. 2008, 129, 084102.   DOI
5 Huo, P.; Coker, D. F. J. Phys. Chem. Lett. 2011, 2, 825.   DOI
6 Nassimi, A.; Bonella, S.; Kapral, R. J. Chem. Phys. 2010, 133, 134115.   DOI
7 Kelly, A.; Rhee, Y. M. J. Phys. Chem. Lett. 2011, 2, 808.   DOI
8 Takagahara, T.; Hanamura, E.; Kubo, R. J. Phys. Soc. Jpn. 1977, 43, 811.   DOI
9 Tanimura, Y.; Kubo, R. J. Phys. Soc. Jpn. 1989, 58, 101.   DOI
10 Tanimura, Y. J. Phys. Soc. Jpn. 2006, 75, 082001.   DOI
11 Schweber, S. S. An Introduction to Relativistic Quantum Field Theory; Dover Publication, Inc.: 2005.
12 Lee, W.-G.; Kelly, A.; Rhee, Y. M. Bull. Korean Chem. Soc. 2012, 33, 933.   DOI
13 Ishizaki, A.; Fleming, G. R. J. Chem. Phys. 2009, 130, 234111.   DOI
14 Ishizaki, A.; Fleming, G. R. Proc. Natl. Acad. Sci. USA 2009, 106, 17255.   DOI
15 Mazenko, G. F. Nonequilibrium Statistical Mechanics; Wiley-VCH Verlag GmbH & Co. KGaA: 2006.
16 Wedemayer, G. J.; Kidd, D. G.; Wemmer, D. E.; Glazer, A. N. J. Biol. Chem. 1992, 267, 7315.
17 Zigmantas, D.; Read, E. L.; Maneal, T.; Brixner, T.; Gardiner, A. T.; Cogdell, R. J.; Fleming, G. R. Proc. Natl. Acad. Sci. USA 2006, 103, 12672.   DOI
18 Read, E. L.; Schlau-Cohen, G. S.; Engel, G. S.; Wen, J.; Blankenship, R. E.; Fleming, G. R. Biophys. J. 2008, 95, 847.   DOI
19 Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Mancal, T.; Cheng, Y.-C.; Blankenship, R. E.; Fleming, G. R. Nature 2007, 446, 782.   DOI   ScienceOn
20 Lee, H.; Cheng, Y.-C.; Fleming, G. R. Science 2007, 316, 1462.   DOI
21 Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer, P.; Scholes, G. D. Nature 2010, 463, 644.   DOI   ScienceOn
22 Mohseni, M.; Rebentrost, P.; Lloyd, S.; Aspuru-Guzik, A. J. Chem. Phys. 2008, 129.
23 Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Nature Chem. 2011, 3, 763.   DOI   ScienceOn
24 Caruso, F.; Chin, A. W.; Datta, A.; Huelga, S. F.; Plenio, M. B. J. Chem. Phys. 2009, 131.
25 Renaud, N.; Ratner, M. A.; Mujica, V. J. Chem. Phys. 2011, 135.
26 Michalowicz, J. V.; Nichols, J. M.; Bucholtz, F.; Olson, C. C. J. Stat. Phys. 2009, 136, 89.   DOI
27 Panitchayangkoon, G.; Hayes, D.; Fransted, K. A.; Caram, J. R.; Harel, E.; Wen, J.; Blankenship, R. E.; Engel, G. S. Proc. Natl. Acad. Sci. USA 2010, 107, 12766.   DOI