• 제목/요약/키워드: Depth Change

검색결과 2,306건 처리시간 0.028초

Effects of Maximum Repeated Squat Exercise on Number of Repetition, Trunk and Lower Extremity EMG Response according to Water Depth

  • Jang, Tae Su;Lee, Dong Sub;Kim, Ki Hong;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.152-160
    • /
    • 2021
  • The purpose of this study was to investigate the difference in the number of repetitions and the change in electromyographic response during the maximum speed squat exercise according to the depth conditions and the maximum speed squat exercise according to the time of each depth. Ten men in their 20s were selected as subjects and the maximum speed squat was performed for one minute in three environmental conditions (ground, knee depth, waist depth). We found that the number of repetitions according to the depth of water showed a significant difference, and as a result of the post-mortem comparison, the number of repetitions was higher in the ground condition and the knee depth than in the waist depth. And the muscle activity of rectus abdominis, erector spinae, rectus femoris, biceps femoris was increased during ground squat exercise, activity of all muscle was decreased during knee depth squat exercise, and activity of rectus abdominis, erector spinae, biceps femoris, tibialis anterior, gastrocnemius was decreased during waist depth squat. In conclusion, muscle activity of lower extremities during squat exercise in underwater environment can be lowered as the depth of water is deep due to buoyancy, but muscle activity of trunk muscles can be increased rather due to the effect of viscosity and drag.

나노 압입곡선의 이론적 분석을 통한 박막의 잔류응력 평가 (Evaluation of Thin Film Residual Stress through the Theoretical Analysis of Nanoindentation Curve)

  • 이윤희;장재일;권동일
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1270-1279
    • /
    • 2002
  • Residual stress is a dominant obstacle to efficient production and safe usage of device by deteriorating the mechanical strength and failure properties. Therefore, we proposed a new thin film stress-analyzing technique using a nanoindentation method. For this aim, the shape change in the indentation load-depth curve during the stress-relief in film was theoretically modeled. The change in indentation depth by load-controlled stress relaxation process was related to the increase or decrease in the applied load using the elastic flat punch theory. Finally, the residual stress in thin film was calculated from the changed applied load based on the equivalent stress interaction model. The evaluated stresses for diamond-like carbon films from this nanoindentation analysis were consistent with the results from the conventional curvature method.

철근콘크리트 내부 온습도 경시변화 추정 모델 구축 (Prediction Model for the Change of Temperature and R.H. inside Reinforced Concrete)

  • 박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.83-84
    • /
    • 2016
  • Surplus water inside a concrete other than moisture that is used for hydration of the cement affects the physical properties of the concrete (modulus of elasticity, compressive strength, drying shrinkage, and creep) by drying. Changes in temperature and humidity inside a concrete has correlation with the movement speed and reaction rate of deterioration factors such as carbon dioxide and chloride ions. In this study, comparison was performed between temperature and relative humidity inside the concrete and meteorological data for exposure environment through measurement at the site for two years. Surface temperature of the concrete (depth 1cm) was measured higher by 6℃ during the summers, while it was measured lower by 2℃ during the winters due to solar radiation, wind, and radiation cooling. As for relative humidity, change was large in the depth of 1cm, while more than 85% was maintained in the depth of 10cm.

  • PDF

Time Series Evaluation of Visual Fatigue and Depth Sensation Using a Stereoscopic Display

  • Kim, Sang-Hyun;Kishi, Shinsuke;Kawai, Takashi;Hatada, Toyohiko
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.188-194
    • /
    • 2009
  • Conventional stereoscopic (3D) displays using binocular parallax generate unnatural conflicts between convergence and accommodation. These conflicts can affect the observer's ability to fuse binocular images and may cause visual fatigue. In this study, time series changes in visual fatigue and depth sensation when viewing stereoscopic images with changing parallax were examined. In particular, the physiological changes, including the subjective symptoms of visual fatigue, when viewing five parallax conditions, were examined. Then a comparative analysis of the 2D and 3D conditions was performed based on the visual function. To obtain data regarding the visual function, the time series changes in the spontaneous-blinking rate before and during the viewing of 3D images were measured. The time series change results suggest that 2D and 3D images cause significantly different types of visual fatigue over the range of binocular disparity.

콘크리트 터널 라이닝 배면공동의 깊이 및 두께변화에 따른 전자파 레이더의 반사파 특성 (Reflection Wave Property of Electromagnetic Radar according to Change of Depth and Thickness of Voids under Concrete Tunnel Lining)

  • 박석균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.789-792
    • /
    • 2004
  • This study aims to detect only voids and estimate the cross-sectional size and thickness of voids using radar. A new method based on radar image processing is carried out with various void sizes and depths. The regression relationship between void size which has different depth and the amplitude characteristics of the radar return is considered in a new method of this research. For the purpose of examining; this regression relationship, experiments with change of void depth, surface area and thickness were carried out. Finally, the threshold value for image processing which aims to represent only voids to be fitted size (width) can be obtained. As the results, a proposed method in this study has a possibility of detecting only voids and estimating void size and thickness with good accuracy.

  • PDF

이종 금속의 선삭 가공 특성에 관한 연구 (Turning Characteristics of differential materials)

    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.43-50
    • /
    • 1998
  • In the use of CNC machine tool, the unmanned production system has been growing in the manufacturing field. Thus, it is necessary to monitor adequate tool fracture during the cutting process efficiently. This experimental study is intended to investigate the development of flank wear in sysnchronous turning of differential materials(Aℓ/GC) which is used in industrial application and it is acknowledged as a machine to difficult material. In cutting process change of velocity, change of feed, and change of depth of cut were investigated on the effect of flank wear, and slenderness ratio is also investigated. The conclusions of this paper are summarized as follows; 1.Under the high cutting speed condition, the flank wear is affected by the feed and depth of cut. but the influence of feed on the flank wear is larger than the depth of cut and that is reduced when the velocity is low. 2.Under the high cutting speed, as the smaller slenderness ratio is, the shorter tool life is under the lower cutting speed, the effect of slenderness ratio on the flank wear is low. 3.Using the characteristics of cutting force, the flank wear of a tool can be detected 4. Investigating the development of flank wear, there are almost no differences between the characteristics of cutting force and feed force. Finally, these data from the differntial materials cutting process will be used in the basic field of precision and economic cutting process.

  • PDF

강원도지역의 토양 동결심 및 상록식물의 함수량 추이에 관한 연구 (2) (Studies on the Soil Freezing Depth and Change of Moisture contents in evergreen Plants upon subzero Temperature in Kangwon area.(2))

  • 홍종운;허범양;원경열;임병춘;이기철;하상건
    • 아시안잔디학회지
    • /
    • 제4권1호
    • /
    • pp.49-55
    • /
    • 1990
  • Experiments were conducted to investigate the relationships between the soil freezing depth and the accumulated degree-day of temperature below $0^{\circ}C$ at 17 locations during 1989-1990 winter season in kangwon province. The observed results are as follows : 1.When accumulated degree-day of temperature below at was 141t at late January soil freezing depth of sunny place was 46.5cm, that of shaded lot was 59 cm, and that of marginal place sunny or shaded area was 55cm, in Chun cheon. 2.Accumulated degree-day of temperature below at of Dae gwangryong area was more than that of Un-du, whereas soil freezing depth of Dae gwangryong was lower that of Un-du. It was considered that snow covering worked as heat insulator. 3.Soil freezing depth of vinyl mulching on Zoysia turf was less by around 2Ocm than that of non-vinyl mulching. Rice hulls covering of 4Ocm showed the great heat insulation effects with the soil freezing depth of 1.5cm at sunny place and 6.5cm at shaded lot compared to that of 47cm at sunny and 59.5 cm at shaded place bare ground. 4.Among investingated areas, Dunae, Honeg seong gun was the deepest soil freezing, 89cm with $569^{\circ}C$ of accumulated degree-day of temperature below $0^{\circ}C$ at late February. 5.dehydration of Juniperus C. var. Kaizuca, Euonymus japonica, and Chamaecyparis pisifira at winter season was around 5 %, however dehydration of Vinca minor was more than 10 %. A Studies on the Soil Freezing Depth and Change of Moisture contents in evergreen Plants upon subzero Temperature in Kangwon area.(2)

  • PDF

적응적 필터를 통한 깊이 터치에 대한 움직임 경로의 보정 방법 (Correction Method of Movement Path for Depth Touch by Adaptive Filter)

  • 이동석;권순각
    • 한국멀티미디어학회논문지
    • /
    • 제19권10호
    • /
    • pp.1767-1774
    • /
    • 2016
  • In this paper, we propose the adaptation filtering for correcting the movement path of the recognized object by the depth information. When we recognize the object by the depth information, the path error should be occurred because of the noises in the depth information. The path error is corrected by appling the lowpass filtering, but the lowpass filtering is not efficient when the changes of the object's movement are rapid. In this paper, we apply the adaptation filtering that it gives weights adaptively as the difference between the predicted location and the measured location. To apply the adaptation filtering, we can see that the proposed method can correct accurately the path error of the radical change from simulation results.

Numerical Study on Floating-Body Motions in Finite Depth

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • 제2권3호
    • /
    • pp.176-184
    • /
    • 2012
  • Installing floating structures in a coastal area requires careful observation of the finite-depth effect. In this paper, a Rankine panel method that includes the finite-depth effect is developed in the time domain. The bottom boundary condition is satisfied by directly distributing Rankine panels on the bottom surface. A stepwise analysis is performed for the radiation diffraction problems and consequently freely-floating motion responses over different water depths. The hydrodynamic properties of two test hulls, a Series 60 and a floating barge, are compared to the results from another computation program for validation purposes. The results for both hulls change remarkably as the water depth becomes shallower. The important features of the results are addressed and the effects of a finite depth are discussed.

Damage Profile of HDPE Polymer using Laser-Induced Plasma

  • Tawfik, Walid;Farooq, W. Aslam;Alahmed, Z.A.
    • Journal of the Optical Society of Korea
    • /
    • 제18권1호
    • /
    • pp.50-54
    • /
    • 2014
  • In this paper we studied the laser-induced crater depth, mass, and emission spectra of laser-ablated high-density polyethylene (HDPE) polymer using the laser-induced plasma spectroscopy (LIPS) technique. This study was performed using a Nd:YAG laser with 100 mJ energy and 7 ns pulse width, focused normal to the surface of the sample. The nanoscale change in ablated depth versus number of laser pulses was studied. By using scanning electron microscope (SEM) images, the crater depth and ablated mass were estimated. The LIPS spectral intensities were observed for major and minor elements with depth. The comparison between the LIPS results and SEM images showed that LIPS could be used to estimate the crater depth, which is of interest for some applications such as thin-film lithography measurements and online measurements of thickness in film deposition techniques.