• 제목/요약/키워드: Deposition reduction

검색결과 490건 처리시간 0.026초

레이저 빔에 의한 YBCO 표면변조 연구 (Study on YBCO Surface Modification by Laser Beam)

  • 정영식;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 1996
  • Surface modification like cone formation on Pulsed laser deposition (PLD) occurs in YBCO target surface irradiated by laser beam. Cone formation results in a reduction of deposition rate, so that it is significant obstacles to an efficient deposition process. With the change of various conditions such as the number of laser shot, target density, direction of incoming laser beam, we have systematically analyzed the modification of target surface. Because cones formed by beam-target interactions grow in direction of incoming laser beam, we have used the method of rotating the target position by 180$^{\circ}$ with the same number and position of laser shot. Experimental results of losing the directionality and changing the shape of cones formed on laser irradiated YBCO target surface is obtained by the SEM image. Also, we have observed that the size of cones formed on target by pulsed laser became larger with increasing the number of laser shots.

  • PDF

Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.262-267
    • /
    • 2015
  • We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of $H_2$ and $C_2H_4$ at 500 and 30 sccm, respectively. On a planar $SiO_2$ substrate, high density SWNTs were grown at a minimum temperature of $760^{\circ}C$. In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at $760^{\circ}C$; low values of $I_D/I_G$ in the Raman spectra were also obtained. This means that the temperature of $760^{\circ}C$ is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.

Titanium Interlayer가 TiN 박막의 밀착특성에 미치는 영향 (The Effect of Titanium Interlayer on the Adhesion Properties of TiN Coating)

  • 공성호;김홍유;신영식;김문일
    • 열처리공학회지
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 1992
  • In order to improve adhesive force of TiN film, we sputtered titanium as interlayer before TiN deposition by Plasma Enhanced Chemical Vapour Deposition. We observed changes of hardness and adhesion at a various thickness of titanium interlayer and also examined analysis. At the critical thickness of the titanium interlayer(about $0.2{\mu}$), adhesive force of TiN films were promoted mostly. But over the critical thickness, a marked reduction of adhesive force was showed, because of the internal stress of titanium interlayer. From AES analysis, the adhesion improvement of TiN films was mainly caused by nitrogen diffusion into titanium interlayer during TiN deposition process which relieved stress concentration at TiN coating-substrate interface.

  • PDF

텡스텐 플러그 CVD 공정에서 SiH4 Soak의 영향 (SiH4 Soak Effects in the W plug CVD Process)

  • 이우선;서용진;김상용;박진성
    • 한국전기전자재료학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-4
    • /
    • 2003
  • The SiH$_4$soak step is widely used to prevent the WF$_{6}$ attack to the underlayer metal using the chemical vapor deposition (CVD) method. Reduction or skipping of the SiH$_4$soak process time if lead to optimizing W-plug deposition process on via. The electrical characteristics including via resistance and the structure of W-film are affected by the time of SiH$_4$soak process. The possibility of elimination of SiH$_4$soak process is confirmed In the case of W- film grown on the stable Ti/TiN underlayer.

Alumina Ceramics상의 무전해 Ni-W-B 도금에 관한 연구 (A Study of the Electroless Ni-W-B Depsition on Alumina Ceramics)

  • 유능희;강성군
    • 한국표면공학회지
    • /
    • 제22권4호
    • /
    • pp.161-167
    • /
    • 1989
  • Effects of bath composition on electroless deposition of Ni-W-B from sulphate solution were invesrigated in terms of deposition kinetics, electro resistivity and composition of deposit film. The microstruigated and crystataine structure of the films were also studied using a scanning electron microscope and X-ray diffractometer. The deposition rate increased linearly with increasing the concentration of nickel sulphate in bath solution, wheras the rate decreasing with sodium citrate. The rate was also affected by sodium tungstate, which was maaximum at the concentration of 0.06 M/1 in sodium tungstate, The content of W in the deposit increased with increased with increasing the sodium citrate had on opposite effect on the composition of W and B in the deposit. The crystal change film from armorphous to cryatallicne nature by heat treatments was proved by the reduction of specific resistance and X-ray diffration.

  • PDF

VHF-PECVD OF Ti/TiN WITH SILANE REDUCTION PROCESS

  • Mizuno, Shigeru
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.350-356
    • /
    • 1996
  • This paper presents VHF-Plasma Enhanced Chemical Vapor Deposition (VHF-PECVD) of Ti/TiN with silne reduction process, using $TiCl_4$ source. VHF plasma, which is denser than a conventional RF plasma, produces a large number of radicals. Silane reduction process, which supplies silane radicals, more promotes dissociation of Ti-Cl bond than a conventional hydrogen reduction process. therefore, the VHF-PECVD with silane reduction process forms high quality Ti/TiN films, which have low level of Cl content(<0.2 at.%). In result, the resistivity for Ti or TiN is less than 200$\mu$$\Omega$cm. The surface morphology of Ti film is very smooth. The structure of TiN film is amorphous. Furthermore, excellent step coverage for the films is obtained.

  • PDF

전자빔 증발법 박막 증착을 이용한 양극 산화 알루미늄 템플릿의 나노 포어 가공 연구 (Study on the narrowed nanopores of anodized aluminum oxide template by thin-film deposition using e-beam evaporation)

  • 이승훈;이민영;김천중;김관오;윤재성;유영은;김정환
    • 한국표면공학회지
    • /
    • 제54권1호
    • /
    • pp.25-29
    • /
    • 2021
  • The fabrication of nanopore membrane by deposition of Al2O3 film using electron-beam evaporation, which is fast, cost-effective, and negligible dependency on substance material, is investigated for potential applications in water purification and sensors. The decreased nanopore diameter owing to increased wall thickness is observed when Al2O3 film is deposited on anodic aluminum oxide membrane at higher deposition rate, although the evaporation process is generally known to induce a directional film deposition leading to the negligible change of pore diameter and wall thickness. This behavior can be attributed to the collision of evaporated Al2O3 particles by the decreased mean free path at higher deposition rate condition, resulting in the accumulation of Al2O3 materials on both the surface and the edge of the wall. The reduction of nanopore diameter by Al2O3 film deposition can be applied to the nanopore membrane fabrication with sub-100 nm pore diameter.

산화-환원 싸이클 조업에 의한 고순도 수소생성 (High Purity Hydrogen Production by Redox Cycle Operation)

  • 전법주;박지훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

A case of regression of atypical dense deposit disease without C3 deposition in a child

  • Kim, Min-Sun;Hwang, Pyoung-Han;Kang, Mung-Jae;Lee, Dae-Yeol
    • Clinical and Experimental Pediatrics
    • /
    • 제53권7호
    • /
    • pp.766-769
    • /
    • 2010
  • Dense deposit disease (DDD) is a rare disorder characterized by the deposition of abnormal electron-dense material within the glomerular basement membrane of the kidneys. The diagnosis is made in most patients between 5 and 15 years of age, and within 10 years, approximately half of the affected patients progress to end-stage renal disease. We report a rare case of regressive DDD without C3 deposition after steroid therapy in an 11-year-old boy. The patient presented with edema, gross hematuria, and nephrotic-range proteinuria. Laboratory testing revealed a serum creatinine level of 1.17 mg/dL, albumin level of 2.3 g/dL, and serum C3 level of 125 mg/dL (range 90-180 mg/dL). The results of the renal biopsy were consistent with DDD without C3 deposition. After 6 weeks of steroid therapy, the nephrotic syndrome completely resolved. The follow-up renal biopsy showed a significant reduction in mesangial proliferation and disappearance of electron-dense deposits in the GBM.

In-Situ Optical Monitoring of Electrochemical Copper Deposition Process for Semiconductor Interconnection Technology

  • Hong, Sang-Jeen;Wang, Li;Seo, Dong-Sun;Yoon, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.78-84
    • /
    • 2012
  • An in-situ optical monitoring method for real-time process monitoring of electrochemical copper deposition (CED) is presented. Process variables to be controlled in achieving desired process results are numerous in the CED process, and the importance of the chemical bath conditions cannot be overemphasized for a successful process. Conventional monitoring of the chemical solution for CED relies on the pH value of the solution, electrical voltage level for the reduction of metal cations, and gravity measurement by immersing sensors into a plating bath. We propose a nonintrusive optical monitoring technique using three types of optical sensors such as chromatic sensors and UV/VIS spectroscopy sensors as potential candidates as a feasible optical monitoring method. By monitoring the color of the plating solution in the bath, we revealed that optically acquired information is strongly related to the thickness of the deposited copper on the wafers, and that the chromatic information is inversely proportional to the ratio of $Cu$ (111) and {$Cu$ (111)+$Cu$ (200)}, which can used to measure the quality of the chemical solution for electrochemical copper deposition in advanced interconnection technology.