DOI QR코드

DOI QR Code

In-Situ Optical Monitoring of Electrochemical Copper Deposition Process for Semiconductor Interconnection Technology

  • Hong, Sang-Jeen (Department of Electronic Engineering, Myongji University) ;
  • Wang, Li (Department of Electronic Engineering, Myongji University) ;
  • Seo, Dong-Sun (Department of Electronic Engineering, Myongji University) ;
  • Yoon, Tae-Sik (Department of Material Science Engineering, Myongji University)
  • Received : 2011.11.08
  • Accepted : 2012.02.07
  • Published : 2012.04.25

Abstract

An in-situ optical monitoring method for real-time process monitoring of electrochemical copper deposition (CED) is presented. Process variables to be controlled in achieving desired process results are numerous in the CED process, and the importance of the chemical bath conditions cannot be overemphasized for a successful process. Conventional monitoring of the chemical solution for CED relies on the pH value of the solution, electrical voltage level for the reduction of metal cations, and gravity measurement by immersing sensors into a plating bath. We propose a nonintrusive optical monitoring technique using three types of optical sensors such as chromatic sensors and UV/VIS spectroscopy sensors as potential candidates as a feasible optical monitoring method. By monitoring the color of the plating solution in the bath, we revealed that optically acquired information is strongly related to the thickness of the deposited copper on the wafers, and that the chromatic information is inversely proportional to the ratio of $Cu$ (111) and {$Cu$ (111)+$Cu$ (200)}, which can used to measure the quality of the chemical solution for electrochemical copper deposition in advanced interconnection technology.

Keywords

References

  1. P. C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, and H. Deligianni, IBM Journal of Research and Development, 42, 567 (1998) [DOI: 10.114/rd.425.0567].
  2. R. Beica, C. Sharbono, and T. Ritzdorf, Proc. 58th Electronic Component and Technology Conference, 577 (2008) [DOI: 10.1109/ECTC.2008.4550031].
  3. J. Reid, V. Bhaskaran, R. Contolini, E. Patton, R. Jackson, E. Broadbent, T. Walsh, S. Mayer, R. Schetty, J. Martin, M. Toben, and S. Menard, Proc. Int. Intercon. Technol. Conf., 284 (1999) [DOI: 10.1109/IITC.1999.787145].
  4. C. Ryu, K.-W. Kwon, A.L.S. Loke, H. Lee, T. Nogami, V.M. Dubin, R.A. Kavari, G.W. Ray, and S.S. Wong, IEEE Trans. Elect. Dev., 46, 1113 (1999) [DOI: 10.1109/16.766872].
  5. H. P. Feng, M. Y. Cheng, Y.L. Wang, S. C. Chang, Y. Y. Wang, and C. C. Wan, Thin Solid Films, 498, 56 (2006) [DOI: 10.1016/ j.tsf.2005.07.062].
  6. S,-i. Imai and M. Kitabata, IEEE. Trans. Semi. Manufac., 22, 432 (2009) [DOI: 10.1109/TSM.2009.2031757]
  7. C. Gabrielli, P. Mocoteguy, H. Perrot, D. Nieto-Sanz, and A. Zdunek, J. Appl. Electrochem, 38, 457 (2007) [DOI: 10.1007/ s10800-007-9459-1]
  8. S. Imai, M. Kitabata, and T. Tanaks, Proc. Adv. Semi. Manufac. Conf., 254 (2009) [DOI: 978-4-9904138-2-8].
  9. S. Imai and M. Kitabata, IEEE Trans. Semi. Manufac., 22, 432 (2009) [DOI: 10.1109/TSM.2009.2031757].
  10. S. Hong and G.S. May, IEEE. Trans. Semi. Manufact., 17, 408 (2004) [DOI: 10.1109/TSM.2004.831952].
  11. H. Namkung, Y. Lee, and H. Chung, Analytica Chimica Acta, 606, 50 (2008) [DOI: 10.1016/j.aca.2007.10.047].
  12. T. Sato, Y. Ozaki, and K. Iriyama, Langmuir, 10, 2363 (1994) [DOI: 10.1021/la00019a055].
  13. J. A. Mielczarski and E. Mielczarski, J. Phys. Chem., 99, 3206 (1995) [DOI: 10.1021/j100010a035]
  14. J. R. Petherbridge, P. W. May, G. M. Fuge, K. N. Rosser, and M. N. R. Ashfold, Diamond and Related Materials, 11, 301 (2002) [DOI: 10.1016/S0925-9635(01)00576-3].
  15. S. Hong and G. May IEEE Trans. Industrial Electronics, 52, 1063 (2005) [DOI: 10.1109/TIE.2005.851663].