• Title/Summary/Keyword: Deposition Velocity

Search Result 253, Processing Time 0.023 seconds

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity (미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착)

  • Choi, Jae-Hyuk;Osamu, Fujita;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

Ozone deposition to the sea surface (해수면으로의 오존침적)

  • Jang Won-Il;Lee Mi-Hye
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.121-122
    • /
    • 2003
  • Deposition to the sea surface is one of ozone's principal loss mechanisms (Galbally and Roy, 1980; Levy et al., 1985; Kramm, 1995). However, since complicated physical and chemical processes are involved, large uncertainties remain in evaluating this loss mechanism that need to be better characterized. In this study we attempted to explore possible causes that give rise to large variability of ozone deposition velocity in terms of wind speed and chemical reactivity in the aqueous-phase film. (omitted)

  • PDF

Estimations of the $SO_2$Dry Deposition Flux at Urban Areas in Korea (우리나라 도시지역의 $SO_2$건성침적 플럭스 산출)

  • 이종범;김용국;박일환
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out estimating the dry deposition flux of $SO_2$at eight urban areas in Korea during one year of 1996. To calculate the deposition flux, deposition velocities were calculated by turbulence parameters estimated from routine meteorological data. Also, hourly averaged $SO_2$concentrations which calculated from air pollution monitoring data of each city were used. The dry deposition velocities were mostly higher in the coastal areas than the other areas, which would be caused by relatively strong wind. And, they were high in the daytime because of turbulence activities. The deposition flux of $SO_2$is mainly related to the atmospheric concentration. The annual average $SO_2$concentration and the deposition flux were 22.62ppb and 1510.52g/$\textrm{km}^2$/hr at Pusan respectively. Also, the flux was higher in winter than other season, which was a significant contribution of exhausted fuel for heating. While the deposition velocity was high to 0.688cm/sec at Yosu in case of strong wind and small cloud cover, the deposition flux was high to 1597.4g/$\textrm{km}^2$/hr at Pusan in case of weak wind and small cloud cover.

  • PDF

A Study on the Sediment Deposition Height Computation at Gunsan Port Using EFDC (EFDC를 이용한 군산항의 유사 퇴적고 계산에 관한 연구)

  • Lee, Dong Joo;Park, Young Ki
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.531-545
    • /
    • 2013
  • This paper was considered on the applicability of EFDC KUNSAN_SEDTRAN MODEL (2012) to calculate Gunsan Port sediment deposition height efficiently and to use for grasping its aspects quantitatively and providing its prevention measures reasonably based on well-known 3-dimensional EFDC sediment transport module. This model was calibrated and verified with various measured field data of A Report of Hydrological Variation on Kum River Estuary (2004). Due to the model calibration and relevant literature investigation for cohesive sediment parameters, settling velocity (WS), critical deposition stress (TD), reference surface erosion rate (RSE), critical erosion stress (TE) were identified as 2.2E-04m/s, 0.20 $N/m^2$, 0.003 $g/s{\cdot}m^2$, 0.40 $N/m^2$ respectivly on this model. In order to examine the applicability and precision of the model computation, the calculated model data of sediment deposition height at 13 stations for 71 days and suspended-sediment concentration at 2 stations, inner port and outer port for 15 days were compared and analyzed with the measured field data. As a result, the model applicability for sediment deposition height simulation was evaluated as NSE coefficient 0.86 and the precision for suspended-sediment concentration computation was evaluated as time averaged relative error (RE) 23%.

A Study of Air Pollutants Dry Deposition (대기오염물질의 건성침적에 관한 연구)

  • Lee, Chi-Young;Kang, Dong-Ku
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.64-68
    • /
    • 2003
  • Measurement of dried deposition for air pollutant was investigated in Gwang-ju Health college area for a year. The average value of air pollutants was investigated three times a month. Measured heavy metals and concentration of mass are not corelated. Heavy metals were thrown up air as state of large particles and they were moved by wind. Deposition of heavy metals and deposition velocities were high in the order of Fe > n > Cu > Pb > Cr and Pb > Fe > Cr > Zn > Cu, respectively. The pattems of deposition velocity of heavy metals for a year were much the same as each other except that Pb is faster than others.

Numerical Analysis of Silicon Deposition in CVD Reactor (화학기상 성장법에 의한 실리콘 부착에 관한 수치해석)

  • Kim, In;Baek, Byung-Joon;Yoon, Jeong-Mo;Lee, Cheul-Ro
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.359-364
    • /
    • 2000
  • The fluid flow, heat transfer and the local mass fi-action of chemical species in the chemical vapor deposition(CVD) manufacturing process are numerically studied. The deposition of silicon from dilute silane is hydrogen carrier gas in a horizontal CVD reactor is investigated. The effect of inlet carrier gas velocity, mass fraction of silane, susceptor angle on the deposition thickness and uniformity was represented.

  • PDF

Numerical Analysis of Silicon Deposition in Horizontal & Vertical CVD Reactor (수평 및 수직형 CVD 증착로의 실리콘 부착에 관한 수치해석)

  • Kim, In;Baek, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.410-416
    • /
    • 2002
  • The fluid flow, heat transfer and the local mass fraction of chemical species in the chemical vapor deposition(CVD) manufacturing process are studied numerically. Flow with a dilute precursor concentration of silane in hydrogen as the carrier gas enters to the reactor and deposits silicon onto the heated surface. The silicon deposition rate using silane is calculated in the horizontal or vertical, axisymmetric reactor. The effects of inlet carrier gas velocity, mass fraction of silane, susceptor angle and rotation of surface on the deposition rate are described.

A Numerical Study on Particle Deposition onto a Heated Semiconductor Wafer in Vacuum Environment (진공 환경에서 가열되는 반도체 웨이퍼로의 입자 침착에 관한 수치해석적 연구)

  • Park, Su-Bin;Yoo, Kyung-Hoon;Lee, Kun-Hyung
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 2018
  • Numerical analysis was conducted to characterize particle deposition onto a heated horizontal semiconductor wafer in vacuum environment. In order to calculate the properties of gas surrounding the wafer, the gas was assumed to obey the ideal gas law. Particle transport mechanisms considered in the present study were convection, Brownian diffusion, gravitational settling and thermophoresis. Averaged particle deposition velocities on the upper surface of the wafer were calculated with respect to particle size, based on the numerical results from the particle concentration equation in the Eulerian frame of reference. The deposition velocities were obtained for system pressures of 1000 Pa~1 atm, wafer heating of 0~5 K and particle sizes of $2{\sim}10^4nm$. The present numerical results showed good agreement with the available experimental ones.

A Flame Study of Soot Deposition and Reentrainment in Application to Control of Diesel Soot Emission (디젤엔진 관련 Soot 부착 및 재유입에 관한 화염에서의 연구)

  • Kim, Seong-Geun;Park, Jong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2626-2636
    • /
    • 1996
  • A study of soot deposition and reentrainment was carried out both theoretically and experimentally to understand behavior of soot formed by incomplete combustion in a diesel engine. Theoretically, soot deposition on engine cylinder wall and/or piston head was studied with a stagnation point flow approximation. Soot reentrainment occurred upon exhaust gas blowdown was also studied by assuming a long-normal shear velocity distribution. Experimentally, a LPG$O_2/N_2$ flame impinging on a disk, produced by a concentric tubular burner, was chosen as deposition configuration and a shear flow unit with compressed air was installed for the study of reentrainment. For selected flame configuration, soot deposition measurements were conducted and showed that the dominant deposition mechanism was thermophoresis. Distributions of gas temperature and soot number density were estimated by combining data obtained by a B-type thermocouple with a thermophoretic transport theory. Disk temperature distributions were directly measured using a K-type thermocouple. Soot size and morphology were estimated from a TEM photograph. Ratios of soot deposit to reentrained amount were measured for a wide range of shear flow velocities, which showed that the reentrainment model was reasonable.