• 제목/요약/키워드: Deposition Hole

검색결과 216건 처리시간 0.025초

Sb 계면활성제에 의한 p-GaN 박막의 홀농도 향상 (Enhanced Hole Concentration of p-GaN by Sb Surfactant)

  • 김자연;박성주;문영부;권민기
    • 한국진공학회지
    • /
    • 제20권4호
    • /
    • pp.271-275
    • /
    • 2011
  • 본 논문은 고휘도 발광소자의 특성을 높이기 위한 p-GaN 박의 홀농도 향상을 연구하였다. 우리는 metal organic chemical vapor deposition 법을 이용하여 Antimony (Sb)가 p-GaN의 홀농도 향상에 도움을 주는 것을 확인하였다. Atomic force microscope 측정을 통해 Sb가 계면활성제처럼 역할을 함으로써 p-GaN의 2차원 성장이 촉진됨을 알 수 있었다. 또한 X-ray diffraction 결과 [002] 면과 [102] 면의 반폭치가 Sb 도핑과 함께 줄어드는 것을 통해 Edge과 Screw 전위의 감소와 photoluminescence 결과에서 450~500 nm 청색 파장 영역에서 발광의 세기가 현저히 줄어드는 것으로 보아 질소 공극이 감소되는 것이 홀농도 향상의 주된 원임임을 알 수 있었다. Trimethylantimony가 10 ${\mu}mol/min$일 때 홀농도는 최대가 되었고 그때 홀농도는 $5.4{\times}10^{17}cm^{-3}$이었다.

Experimental Demonstration of Enhanced Transmission Due to Impedance-matching Si3N4 Layer in Perforated Gold Film

  • Park, Myung-Soo;Yoon, Su-Jin;Hwang, Je-Hwan;Kang, Sang-Woo;Kim, Deok-kee;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.359-359
    • /
    • 2014
  • In this study, surface plasmon resonance structures for the selective and the enhanced transmission of infrared light were designed. In order to relieve the large discontinuity of refractive index between air and metal hole array, $Si_3N_4$ was used as the impedance matching layer. Experimental parameter were calculated and determined in advance by the rigorous coupled wave analysis (RCWA) simulation, and then the experiment was carried out. A 2-dimensional metal hole array structures were patterned on the size of $1{\times}1cm^2$ GaAs substrate using photolithography process, and 5 nm thick Ti, 50 nm thick Au were deposited by E-beam evaporator, respectively. Subsequently, $Si_3N_4$ films with various thicknesses (150, 350, 550, and 750 nm) were deposited by plasma enhanced chemical vapor deposition (PECVD). For the comparison, transmittance of specimens with and without $Si_3N_4$ was measured using Fourier transform infrared spectroscopy (FTIR) in the range of $2.5-15{\mu}m$. Furthermore, the surface and the cross-sectional images were collected from the specimens by scanning electron microscopy (SEM). From the results, it was demonstrated that the transmittance was enhanced up to 80% by the deposition of 750 nm $Si_3N_4$ at $6.23{\mu}m$. It has advantage of enhanced transmission despite the simple fabrication process.

  • PDF

나노 블록공중합체 템플레이트에 ALD로 제조된 센서용 TiO2 박막의 미세구조 연구 (Microstructure of TiO2 sensor electrode on nano block copolymertemplates using an ALD)

  • 박종성;한정조;송오성;전승민;김형기
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.239-244
    • /
    • 2009
  • We fabricated nano-templates by low temperature BCP(block copolymer) process at 180 $^{\circ}C$, then we deposited 10 nm-thick $TiO_2$ layers with ALD(atomic layer deposition) at low temperature of 150 $^{\circ}C$. Through FE-SEM analysis, we confirmed the successful formation of the groove-type(width of crest : 30 nm, width of trough : 18 nm) and the cylinder-type(diameter : 10 nm, distance between hole : 25 nm) templates. Moreover, after $TiO_2$-ALD processing, we confirmed the deposition of the uniform nano layers of $TiO_2$ on the nano-templates. Through AFM analysis, the pitches of the crest-through(in groove-type) and hole-hole(in cylinder-type) were the same before and after $TiO_2$-ALD processing. In addition, we indirectly determined the existence of the uniform $TiO_2$ layers on nano-templates as the surface roughness decreased drastically. We successfully fabricated nano-template at low temperature and confirmed that the three-dimensional nano-structure for sensor application could be achieved by $TiO_2$-ALD processing at extremely low temperature of 150 $^{\circ}C$.

NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성 (Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness)

  • 최규채;정국채;김영국;조영상;최철진;김양도
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • 김윤학;박순미;권순남;김정원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

단일 식각 홀을 갖는 SiO2 희생층의 불화수소 증기 식각 (Hydrogen Fluoride Vapor Etching of SiO2 Sacrificial Layer with Single Etch Hole)

  • 김차영;노은식;신금재;문원규
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.328-333
    • /
    • 2023
  • This study experimentally verified the etch rate of the SiO2 sacrificial layer etching process with a single etch hole using vapor-phase hydrogen fluoride (VHF) etching. To fabricate small-sized polysilicon etch holes, both circular and triangular pattern masks were employed. Etch holes were fabricated in the polysilicon thin film on the SiO2 sacrificial layer, and VHF etching was performed to release the polysilicon thin film. The lateral etch rate was measured for varying etch hole sizes and sacrificial layer thicknesses. Based on the measured results, we obtained an approximate equation for the etch rate as a function of the etch hole size and sacrificial layer thickness. The etch rates obtained in this study can be utilized to minimize structural damage caused by incomplete or excessive etching in sacrificial layer processes. In addition, the results of this study provide insights for optimizing sacrificial layer etching and properly designing the size and spacing of the etch holes. In the future, further research will be conducted to explore the formation of structures using chemical vapor deposition (CVD) processes to simultaneously seal etch hole and prevent adhesion owing to polysilicon film vibration.

이온화클러스터빔 증착법에 의한 구리 박막의 반도체 접촉구 메움 향상에 관한 연구 (Improvement of semiconductor contact hole filling of Copper by ionized cluster beam deposition technique)

  • 백민;손기황;김도진
    • 한국진공학회지
    • /
    • 제7권2호
    • /
    • pp.118-126
    • /
    • 1998
  • 반도체 접촉구를 메우기 위하여 소오스의 직진성을 향상시키기 위한 연구를 수행하 였다. 이온화클러스터빔 증착법을 이용하는 동시에 셀의 구조를 개선하여 직진성 향상을 도 모하였다. 중성클러스터 만으로 구리를 증착할 경우 직진성은 매우 우수하였으나 소오스의 표면 이동이 적어 박막은 주상형으로 성장하며 측벽에의 증착은 거의 일어나지 않았으며 성 장에 따라 그림자효과로 인한 단차에서의 벽개가 관찰되었다. 그러나, 가속전압을 인가하여 전하를 띤 클러스터를 형성시켜 증착하였을 때 주상형 성장 모드는 사라졌으며, 직경 0.5$\mu$ m, aspect ratio 2의 접촉구에서 완벽한 바닥면의 도포성을 나타내었고, 측벽에의 증착성도 향상되어 막의 연결성이 개선되었다. 이로써 이온화 클러스터빔 증착법이 직진성을 향상시 켜 작은 접촉구의 메움을 향상시킬수 있는 물리적 증착 방법임을 확인하였다.

  • PDF

파릴렌 고분자의 특성 및 응용 (Characteristics of Parylene Polymer and Its Applications)

  • 윤영수;최선희;김주선;남상철
    • 한국재료학회지
    • /
    • 제14권6호
    • /
    • pp.443-450
    • /
    • 2004
  • Parylene polymer thin film shows excellent homogeneous coverage chracteristics when it was deposited onto very complex three dimensional solid matters, such as deep hole and micro crack. The parylene deposition process can be conducted at room temperature although most of chemical vapor deposition processes request relatively high processing temperature. Therefore, the parylene coating process does not induce any thermal problems. Parylene thin film is transparent and has extremly high chemical stability. For example, it shows high chemical stability with high reactive chemical solutions such as strong acid, strong alkali and acetone. The bio-stability of this material gives good chances to use for a packaging of biomedical devices and electronic devices such as display. In this review article, principle of deposition process, properties and application fields of parylene polymer thin film are introduced.

Electrodeposition of Copper on AZ91 Mg Alloy in Cyanide Solution

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.238-244
    • /
    • 2016
  • Copper electrodeposition on AZ91 Mg alloy was studied in views of preferential deposition on ${\alpha}$- or ${\beta}$- phases and how to achieve uniform deposition over the entire surface on ${\alpha}$- and ${\beta}$-phases in a cyanide solution. The inhomogeneous microstructure of AZ91 Mg alloy, particularly ${\alpha}$- and ${\beta}$-phases, was found to result in non-uniform deposition of zincate layer, preferential deposition of zincate on ${\beta}$-phases, which leads to non-uniform growth of copper layer during the following electrodeposition process. The preferential depositions of zincate can be attributed to higher cathodic polarizations on the ${\beta}$-phases. Pin-hole defects in the copper electrodeposit were observed at the center of large size ${\beta}$-phase particles which is ascribed to gas bubbles formed at the ${\beta}$-phases. The activation of AZ91 Mg alloy in hydrofluoric acid solution was used to obtain uniform growth of zincate layer on both the ${\alpha}$- and ${\beta}$-phases. By choosing an optimum activation time, a uniform zincate layer was obtained on the AZ91 Mg alloy surface and thereby uniform growth of copper was obtained in a cyanide copper electroplating solution.

정공 수송층(TPD) 증착 속도에 따른 유기 발광 소자의 전기적 특성 (Electrical Characteristics of OLEDs depending on the Deposition Rate of Hole Transport Layer(TPD))

  • 김원종;이영환;이상교;박희두;조경순;김태완;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.87-88
    • /
    • 2008
  • In the structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris (8-hydroxyquinoline)aluminum$(Alq_3)$/Al device, we studied the efficiency improvement of organic light-emitting diodes due to variation of deposition rate of TPD materials. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm, respectively under a base pressure of $5\times10^{-6}$Torr using a thermal evaporation. The $Alq_3$ used for an electron-transport and emissive layer were evaporated to be at a deposition rate of 2.5 $\AA$/s. When the deposition rate of TPD increased from 1.5 to 3.0 $\AA$/s, we found that the average roughness is rather smoother, external quantum efficiency is superior to the others when the deposition rate of TPD is 2.5 $\AA$/s. Compared to the ones from the devices made with the deposition rate of TPD 3.0 $\AA$/s, the external quantum efficiency was improved by a factor of eight.

  • PDF